This updated version of the Electronic Supplementary Information (published on 05 Nov 2018) replaces the original version first published on-line on 23 Sep 2016.

Supporting Information:

Hierarchical Porous Nitrogen-Rich Carbon Nanospheres with High and Durable Capabilities for Lithium and Sodium Storage

Lianbo Ma,^{a#} Renpeng Chen,^{a#} Yi Hu,^a Guoyin Zhu,^a Tao Chen,^a Hongling Lu,^a Jia Liang,^a Zuoxiu Tie,^{a,b} Zhong Jin,^{*a} and Jie Liu^{*a,c}

^a Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China

^b College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China

^c Department of Chemistry, Duke University, Durham, North Carolina, 27708, USA

[#]These authors contributed equally to this work.

*Address correspondence to: <u>zhongjin@nju.edu.cn</u> (Prof. Z. Jin); <u>j.liu@duke.edu</u> (Prof. J. Liu)

Table S1. Comparison of lithium storage performance of HPNC material with other

Ref.	Samples	Nitrogen content	Current density (mA g ⁻¹)	Cycle number	Specific capacity after cycling (mAh g ⁻¹)	Retention from the second cycle (%)
This work	Hierarchical porous nitrogen-rich carbon	17.4 wt.%	100	100	1,187	104.7
			1,000	500	788	82.8
	nanospheres	(13.5 at. 70)	5,000	1,000	396	84.4
24	Porous carbon fiber		186	45	400	~100
26	Hollow carbon nanospheres		37	50	630	74.1
28	Graphene nanosheets		50	20	600	80.0
39	Hollow carbon nanospheres		186	100	~400	81.6
40	Nitrogen-doped porous graphene	5.8 at.%	400	200	496	108.3
41	Branched graphene nanocapsules	2.8 at.%	500	200	1,373	95.3
42	Nitrogen-doped graphene	3.9 at.%	74	50	550	57.9
43	Folded structured graphene		100	100	568	78.9
44	Nitrogen-doped carbon nanotube	16.4 at.%	100	100	397	82.7
45	Nitrogen-doped carbon capsules	13.0 at.%	50	50	1,046	95.1
46	Nitrogen-doped graphene/graphite foam	2~3 at.%	186	300	397	94.5
47	3D nitrogen-doped graphene@CNT	2.5 at.%	2,000	300	1,089	72.6
48	Hollow CNT/carbon fiber	1.4 wt.%	100	70	1,150	76.6
49	Nitrogen-doped graphene sheets	23.6 wt.%	100	108	770	96.3
50	Nitrogen-doped porous carbon	2.1 wt.%	100	160	1,336	89.1
51	Graphene nanosheets		1,000	300	557	92.8
52	2D carbon nanosheets		100	10	~600	57.7

pristine or nitrogen-doped carbon-based materials in the literatures [24,26,28,39–52].

pristine of muogen doped euroon bused materials in the netratures [25,25,27,55 b2].						
Ref.	Samples	Nitrogen content	Current density (mA g ⁻¹)	Cycle number	Specific capacity after cycling (mAh g ⁻¹)	
	Hierarchical porous	17.4 wt.%	100	100	272	
This work	nitrogen-rich carbon nanospheres	(15.3 at.%)	1,000	500	136	
23	Hollow carbon nanowires		50	400	251	
25	Carbon fibers		50	280	245	
27	Hollow carbon nanospheres		100	100	160	
53	Nitrogen-rich porous carbon	7.8 at.%	500	800	~110	
54	Mesocarbon microbeads		15	50	172	
55	Carbon membrane		40	200	243	
56	Wood fiber derived hard carbon		100	200	196	
57	Polyvinyl chloride nanofibers derived carbon		12	126	211	
58	Hierarchical carbon nanocages		100	100	~150	
59	Graphite		200	6,000	110	
60	Hydrogen-enriched porous carbon nanosheets		50	100	302	
61	Nitrogen-doped carbon nanofibers	10.7 wt.%	50	200	254	
62	Nitrogen-doped bamboo-like carbon nanotubes	2.5 at.%	500	160	~105	

Table S2. Comparison of sodium storage performance of HPNC material with other pristine or nitrogen-doped carbon-based materials in the literatures [23,25,27,53–62].

Fig. S1. Schematic illustration of the synthesis procedure of HPNC nanospheres.

Fig. S2. X-ray diffraction (XRD) spectrum of the $Zn_3[Co(CN)_6]_2 \cdot nH_2O/PVP$ precursor nanospheres (JCPDS card No. 23-1494, space group: *Fm-3m*, *a* = 9.940, *b* = 9.940, *c* = 9.940).

Fig. S3. (a,b) Field-emission scanning electron microscopy (FESEM) images of the $Zn_3[Co(CN)_6]_2 \cdot nH_2O/PVP$ precursor nanospheres. Uniform distributed nanospheres with the diameter range of 500–700 nm can be seen clearly.

Fig. S4. FESEM images of the $Zn_3[Co(CN)_6]_2 \cdot nH_2O/PVP$ precursor nanospheres after thermal annealing at (a,b) 500 °C, (c,d) 600 °C, (e,f) 700 °C, and (g,h) 800 °C, respectively. All the products inherited the spherical morphology but with shrinked diameter (400–500 nm).

Fig. S5. Transmission electron microscopy (TEM) images of the carbide/carbon nanospheres derived from $Zn_3[Co(CN)_6]_2 \cdot nH_2O/PVP$ precursor nanospheres after thermal annealing at (a,b) 500 °C, (c,d) 600 °C, (e,f) 700 °C, and (g,h) 800 °C, respectively. All the products display similar morphology with nanoparticles embedded into carbon frameworks.

Fig. spectra of the carbide/carbon nanospheres **S6**. XRD derived from $Zn_3[Co(CN)_6]_2 \cdot nH_2O/PVP$ precursor nanospheres after thermal annealing at (a) 500 °C, (b) 600 °C, (c) 700 °C, and 800 °C. The diffraction peaks of Co₃ZnC can be clearly recognized in the XRD spectra of (a) and (b) (JCPDS card No. 29-0524, space group: Pm-3m, a = 3.730, b = 3.730, c = 3.730). The XRD diffraction peaks in (c) can be attributed to the co-existence of Co₃ZnC and Co₃C (JCPDS card No. 43-1144, space group: P63/mmc, a = 2.685, b = 2.685, c = 4.335). The formation of Co₃C can be ascribed to the gradual evaporation of Zn element in Co₃ZnC. The XRD diffraction peaks in (d) are totally attributed to the Co_3C , because Zn element in the product has been evaporated thoroughly. Therefore, it can be concluded that with the increase of thermal annealing temperature from 500 to 800 °C, the embedded carbide nanoparticles evolved from Co₃ZnC to Co₃C.

Fig. S7. Dynamic light scattering (DLS) analysis of HPNC-600 nanospheres.

Fig. S8. (a,b) High-resolution transmission electron microscopy (HRTEM) images of HPNC-*600* nanosphere. The HRTEM observations clearly revealed the existence of mesopores, as marked with red arrows. The observed lattice distances correspond to the (002) plane of graphite but with a larger value (0.35 nm).

Fig. S9. (a,b) FESEM and (c) TEM images of HPNC-*500* nanospheres. (d,e) FESEM and (f) TEM images of HPNC-*700* nanospheres. (g,h) FESEM and (i) TEM images of HPNC-*800* nanospheres. The insets of (c), (f), and (i) show the selected-area electron diffraction (SAED) patterns of HPNC-*500*, HPNC-*700*, and HPNC-*800* nanospheres, respectively. These images reveal the similar morphology and nanostructure to that observed from HPNC-*600* nanospheres.

Fig. S10. Energy dispersive X-ray (EDX) spectra of (a) HPNC-*500*, (b) HPNC-*600*, (c) HPNC-*700*, and (d) HPNC-*800*.

Table S3. Brunauer–Emmett–Teller (BET) parameters of HPNC samples determined

 by the nitrogen adsorption-desorption isotherms.

Samples	Specific surface area (m ² /g)	Total pore volume (cm ³ /g)	Average diameter of micropores (nm)	Size range of mesopores (nm)	
HPNC-500	274.4	0.35	1.0	3.0-12	
HPNC-600	531.5	0.81	1.1	3.0–15	
HPNC-700	394.6	0.64	1.0	3.0–15	
HPNC-800	426.9	0.70	0.9	3.0–15	

Fig. S11. Survey X-ray photoelectron spectroscopy (XPS) spectra of HPNC samples.

Fig. S12. The high-resolution XPS spectra of C 1s regions of (a) HPNC-*500*, (b) HPNC-*600*, (c) HPNC-*700*, and (d) HPNC-*800* nanospheres, respectively.

Fig. S13. Schematic illustration of the atomic structure of nitrogen-rich carbon layer in HPNC samples.

	XPS (wt.%)			[#] Percentage of total N 1s		
Samples	С	Ν	0	graphitic N	pyrrolic N	pyridinic N
HPNC-500	77.5	19.3	3.2	16.1	38.8	45.1
HPNC-600	80.2	17.4	2.4	21.0	35.6	43.4
HPNC-700	87.2	10.6	2.2	34.4	24.9	40.7
HPNC-800	92.9	5.1	2.0	40.8	25.6	33.6

Table S4. The parameters of XPS spectra and the fitting results of N 1s peaks of HPNC samples.

[#] The percentage of different nitrogen species in total N 1s were determined based on the deconvoluted XPS spectra of HPNC samples.

Fig. S14. Lithium storage performance of HPNC samples. Typical CV curves (a) and charge-discharge profiles (b) of HPNC-*500* based anode. Typical CV curves (c) and charge-discharge profiles (d) of HPNC-*700* based anode. Typical CV curves (e) and charge-discharge profiles (f) of HPNC-*800* based anode.

Fig. S15. Cycling performance of HPNC-500, HPNC-700, and HPNC-800 based anodes for LIBs at 100 mA g^{-1} .

Fig. S16. Rate performances of (a) HPNC-*500*, (b) HPNC-*700*, and (c) HPNC-*800* based anodes for LIBs at various current densities $(100-5,000 \text{ mA g}^{-1})$.

Fig. S17. Fourier transform infrared (FT-IR) spectra of HPNC samples. The band at about 2225 cm⁻¹ is attributed to the cyan groups ($-C\equiv N$), and the band at about 1600 cm⁻¹ belongs to the stretching vibration of -C=N- bonds. Both the bands at 2225 and 1600 cm⁻¹ can be observed clearly in the spectrum of HPNC-*500*, suggesting that the $-C\equiv N$ groups are still existed in HPNC-*500* nanospheres. However, the band of $-C\equiv N$ disappeared and the band intensity of -C=N- bonds increased in the FT-IR spectra of HPNC-*600*, HPNC-*700*, and HPNC-*800* samples, indicating that the $-C\equiv N$ groups were removed thoroughly in these samples by high-temperature annealing.

Fig. S18. Nyquist plots of HPNC based anodes for LIBs.

Fig. S19. The Coulombic efficiency of HPNC-600 based anode for LIBs within the first 500 cycles at 1,000 mA g^{-1} .

Fig. S20. Cycling performances and corresponding Coulombic efficiencies of (a) HPNC-*500*, (b) HPNC-*700*, and (c) HPNC-*800* based anodes for LIBs at 1,000 mA g⁻¹.

Fig. S21. (a,b) FESEM and (c,d) TEM images of HPNC-*600* nanospheres after longterm stability tests (1,000 cycles) at 5,000 mA g^{-1} for LIBs. The red arrows in (d) indicate the existence of mesopores in HPNC nanospheres. The FESEM and further TEM characterizations reveal that the morphology of HPNC-*600* nanospheres retains well even after long-term cycling at a very high current density.

Fig. S22. Cycling performance of HPNC-*500*, HPNC-*700*, and HPNC-*800* based anodes for SIBs at 100 mA g⁻¹.

Fig. S23. (a,b) FESEM images of HPNC-600 nanospheres after long-term cycling stability tests (500 cycles) at 1,000 mA g⁻¹ for SIBs.