
Supporting Information

Landon Oakes1,2, Rachel Carter2, and Cary L. Pint1,2

1. Interdisciplinary Materials Science and Engineering, Vanderbilt University, Nashville, TN, 

37212

2. Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212

*Address correspondence to cary.l.pint@vanderbilt.edu

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2016

mailto:cary.l.pint@vanderbilt.edu


Figure S1. TEM analysis of the CNHs used in this study. (A) TEM of an individual CNH emphasizing the 
tortuous, defective nature of the carbon comprising the CNH. (B,C) Zoomed-in analysis of the edges of 
the CNH illustrating the conical carbon terminations characteristic of CNH materials.



Figure S1. Zeta potential measurements of NMP solutions of the nanostructures used in this study. 
Measurements were performed on solutions with a concentration of 50 µg/ml.



Figure S2. (A) SEM image of a 70% CNH cross-sectional sample infiltrated to 75 wt.% sulfur. The red line 
inset describes the location of the EDS elemental analysis performed to investigate the uniformity of the 
sulfur coating. (B) Corresponding EDS linescan emphasizing the uniformity of the sulfur content 
throughout the entirety of the carbon film.
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Figure S3. Resistivity measurements of the different hybrid materials before and after sulfur coating.



Figure S4. An analysis of the LOPS to HOPS for the rate study presented in Fig. 5A.



Figure S5. SEM characterization of the large-scale morphologies of the material systems used in this 
study. Insets indicate the amount of CNH loading present in each system. From these images, it is 
evident that the SWCNTs impart structural stability to the films and those lacking the presence of any 
SWCNTs have demonstrate cracking and delamination.



Figure S6. (A) Optical image of the coated mesh before and after cycling. The light colored residue on 
the cycled mesh electrode is due to dried electrolyte on the samples. (B) SEM characterization of the 
coated electrode after 10 charge-discharge cycles at a rate of 0.1 C emphasizing the stable adhesion of 
the carbon-sulfur composite on the mesh after cycling. (C) Higher magnification image of the sample in 
(B) demonstrating uniformity of the coating at small scales. 
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Figure S7. Coulombic efficiency for the devices cycled at 0.2 C.



ref. capacity 
(mAh/g)

loading 
(%)

additives 
(S:CB:binder)

utilization      
( mAh/g )

1 1400 37 binder-free 518

2 1382 72 80:10:10 995.04
3 1368 52.5 70:10:20 718.2
4 1374 59 80:10:10 810.66

5 1219 53 binder-free 646.07
6 1633 68 80:10:10 1110.44
7 1120 56 75:10:15 627.2
8 1264 60 binder-free 758.4

9 1239 72 80:10:10 892.08
10 1070 56 binder-free 599.2
11 1400 35 70:20:10 490
12 1048 50 binder-free 524
13 1246 63.7 85:12:03 793.702

14 1346 62 binder-free 834.52
15 1340 62 binder-free 830.8
16 1021 57.12 80:10:10 583.1952
17 1260 58.4 80:15:10 735.84

18 911 53 binder-free 482.83

19 1317 48.3 70:20:10 636.111

20 1070 53.6 80:12:08 573.52

21 1310 63 binder-free 825.3
22 1620 65 binder-free 1053
23 800 52 binder-free 416

24 750 76.5 85:15:00 573.75
25 1010 62 90:10:00 626.2
26 1278 47.25 75:15:10 603.855
27 998 33.6 70:15:15 335.328

Table S1. Detailed description of the relevant parameters used to generate the plot in Figure 5. In order 
to calculate utilization, the sulfur loading was multiplied by the discharge capacity.
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