Electronic Supplementary Information

Controlled Synthesis of Au-Fe and Their Conversion to Au-Fe₃O₄ Heterostructured Nanoparticles

Guangming Jiang,^{a,b,#} Yuxi Huang,^{b,#} Sen Zhang,^c Huiyuan Zhu,^{b,e} Zhongbiao Wu,^{d,*} Shouheng Sun^{b,*}

^aEngineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China

^bDepartment of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

^cDepartment of Chemistry, University of Virginia, Charlottesville, VA, 22904

^dDepartment of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China

^eCurrent address: Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA [#]These authors contribute equally to the work.

* Fax: 401-863-9046; Tel: 401-863-3329; E-mail: zbwu@zju.edu.cn; ssun@brown.edu

Figure S1. TEM images of 4 nm, 7 nm and 10 nm Au NPs.

Figure S2. TEM image of the Au-Fe heterodimer NPs synthesized in the absence of HDA·HCl.

Figure S3. XRD patterns of the 4-15 nm Au-Fe heterodimer before and after the storing in ambient condition for four weeks.

Figure S4. TEM images of the 10 nm Au-hollow Fe_3O_4 heterodimer NPs synthesized from the oxidation of 10-11 nm Au-Fe heterodimer NPs at (A) 120 °C; (B) 200 °C and (C) 240 °C for 15 min.

Figure S5. (A) TEM image of the 4 nm Au-porous hollow Fe_3O_4 NPs; (B) UV-Vis spectra change of the 4 nm Au-hollow Fe_3O_4 and 7 nm Au- hollow Fe_3O_4 before and after the aging.

Figure S6. TEM image of the 7 nm Au-porous hollow Fe₃O₄ NPs.

Figure S7. TEM images of the 7 nm Au-hollow porous Fe_3O_4 NPs synthesized from the 7 nmAu-hollow Fe_3O_4 heterodimer NPs after incubation for 30 min under (D) 200 °C, 0.08 mLOAm and 0.08 mL OAc; (E) 240 °C, 0.24 mL OAm and 0.08 mL OAc; (F) 240 °C, 0.08 mL OAmand0.24MLOAc.

Table S1. Reaction conditions for the synthesis of the Au-Fe heterodimer NPs, Au-hollow Fe_3O_4 yolk-shell NPs and the Au-porous hollow
 Fe_3O_4 NPs.

	Materials			Surfactant			Solvent			
Sample	Au	Fe(CO) ₅	Seeds	OAm / mL	Oleic acid / mL	HDA.HCl / mmol	ODE/ mL	Benzyl ether/ mL	Temp. / °C	Time / min
4 nm Au-Fe heterodimer NPs	24 mg (4 nm)	0.28 mL	/	1.0	/	1.0	12	/	180	30
7 nm Au-Fe heterodimer NPs	24 mg (7 nm)	0.24 mL	/	1.0	/	1.0	12	/	180	30
10 nm Au-Fe heterodimer NPs	30 mg (10 nm)	0.21 mL	/	1.0	/	1.0	12	/	180	30
4 nm Au-hollow Fe ₃ O ₄ yolk/shell NPs	/	/	4 nm Au-Fe heterodimer NPs	1.0	/	/	20	/	160	15
7 nm Au-hollow Fe ₃ O ₄ yolk/shell NPs	/	/	7 nm Au-Fe heterodimer NPs	1.0	/	/	20	/	160	15
10 nm Au-hollow Fe ₃ O ₄ heterodimer NPs	/	/	10 nm Au-Fe heterodimer NPs	1.0	/	/	20	/	160	15
4 nm Au-hollow porous Fe ₃ O ₄ heterodimer NPs	/	/	4 nm Au-hollow Fe ₃ O ₄ yolk/shell NPs	0.08	0.08	/	/	10	240	30
7 nm Au-hollow porous Fe ₃ O ₄ heterodimer NPs	/	/	7 nm Au-hollow Fe ₃ O ₄ yolk/shell NPs	0.08	0.08	/	/	10	240	30