Supporting Information

Three-Dimensional Conductive Networks based on Stacked SiO₂@graphene Frameworks for Enhanced Gas Sensing

Da Huang,^a Zhi Yang,^{*a,b} Xiaolin Li,^a Liling Zhang,^a Jing Hu,^a Yanjie Su,^a Nantao

Hu,*a Guilin Yin,^b Dannong He^b and Yafei Zhang^a

^aKey Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. Email: zhiyang@sjtu.edu.cn and hunantao@sjtu.edu.cn

^bNational Engineering Research Center for Nanotechnology, Shanghai 200241, P. R.

China

Fig. S1 (a) TEM images of bare GO. (b) Representative AFM image and corresponding thickness analysis, revealing a uniform thickness of 0.74 nm for bare GO nanosheets.

Fig. S2 SEM images of (a) $SiO_2@GO$ composites made from 130 nm SiO_2 spheres. (b) SiO_2/GO mixture, without modification of SiO_2 spheres by APTMS.

Fig. S3 *IV* curves of bare SiO₂@GO and SiO₂@TRGO with different concentration.

Fig. S4 Schematic illustration of the increased surface area brought by 3D SiO₂@RGO framework.

Fig. S5 Cyclic voltammograms of (a) $SiO_2@TRGO$ and (b) TRGO in a 10 mM $[Fe(CN)6]^{3-/4-}$ and 0.1 M KCl solution at different scan rates from 25 to 300 mV s⁻¹.

Fig. S6 The thickness of $SiO_2@TRGO$ film on interdigital electrodes with different concentrations of (a) 2 mg/mL, (b) 4 mg/mL, (c) 8 mg/mL and (d) 16 mg/mL.

Fig. S7 The change of conductivity of SiO₂@TRGO sensors in different RH.

Fig. S8 (a) The change of conductivity of $SiO_2@TRGO$ sensors at different temperature, (b) The response curves of $SiO_2@TRGO$ towards 50 ppm NO_2 at different temperatures.

Fig. S9 Selectivity of SiO_2 (a) TRGO based sensing device towards 50 ppm NO₂, 50 ppm NH₃ compared with other analytes with 1% of saturated vapor concentrations.

Sensing material	Dimen-	Modified	Increased	Response towards NH_3 ($\DeltaG/R_0)$	Response towards NO ₂ (Δ G/G ₀)	Ref
	sional gr	graphene	surface			
SiO ₂ @TRGO	3D	-	Yes	6.8% for 50 ppm NH ₃ in 250 s	35.5% for 1 ppm NO ₂ in 250 s	-
Bare TRGO	2D	-	-	27% for 1% NH_3 in 50 min	12% for 2 ppm NO_2 in 40 min	1
Chemical reduced GO	2D	Yes	-	5.5% for 200 ppm NH ₃ in 500s	-	2
Chemical reduced GO	2D	Yes	-	-	88% for 5 ppm NO_2 in 10 min	3
CVD graphene foam	3D	-	Yes	30% for $1\%~NH_3$ in $800~s$	~4% for 20 ppm NO_2 in 400 s	4
RGO/Ag nanowires	-	Yes	-	7.5% for 50 ppm NH_3 in 300s	-	5
vertically oriented graphene	3D	-	Yes	5% for 1% NH ₃ in 18 min	157% for 200 ppm NO_2 in 14 min	6
Graphene nanomesh	-	Yes	Yes	11.8% for 50 ppm NH_3 in 20 min	6% for 1 ppm NO ₂ in 15 min	7
RGO on 3D pillars	3D	-	Yes	100% for 40 ppm NH ₃ in 2000 s	28% for 5 ppm NO_2 in 15 min	8

Table S1. Comparison of sensing performance of some graphene based sensing devices reported previously.

Notes and references

- 1. G. H. Lu, L. E. Ocola and J. H. Chen, *Nanotechnology*, 2009, **20**, 445502.
- R. Ghosh, A. Midya, S. Santra, S. K. Ray and P. K. Guha, *ACS Appl. Mater. Interfaces*, 2013, 5, 7599–7603.
- W. J. Yuan, A. R. Liu, L. Huang, C. Li and G. Q. Shi, *Adv. Mater.*, 2013, 25, 766–771.
- 4. F. Yavari, Z. P. Chen, A. V. Thomas, W. C. Ren, H.-M. Cheng and N. Koratkar, *Sci. Rep.*, 2011, **1**, 166.
- 5. T. Quang Trung, H. Huynh Tran My, D.-H. Yoo, C. Tran Viet, S. H. Hur, J. S. Chung, E. J. Kim and P. A. Kohl, *Sens. Actuators, B*, 2014, **194**, 45–50.
- K. Yu, P. Wang, G. Lu, K.-H. Chen, Z. Bo and J. Chen, J. Phys. Chem. Lett., 2011, 2, 537–542.
- R. K. Paul, S. Badhulika, N. M. Saucedo and A. Mulchandani, *Anal. Chem.*, 2012, 84, 8171–8178.
- D. Le Thai, D.-J. Kim, T. Tran Quang, D. Vinh Quang, B.-Y. Kim, H. K. Moon and N.-E. Lee, *Adv. Funct. Mater.*, 2015, 25, 883–890.