Supporting Information

High-Strength Carbon Nanotube/Carbon Composite Fibers by Chemical Vapor Infiltration

Jaegeun Lee, ${ }^{1, \dagger}$ Teawon Kim, ${ }^{2, \dagger}$ Yeonsu Jung, ${ }^{3}$ Kihoon Jung, ${ }^{1}$ Junbeom Park, ${ }^{1,2}$ Dong-Myeong Lee, ${ }^{1,4}$ Hyeon Su Jeong, ${ }^{1}$ Jun Yeon Hwang, ${ }^{1}$ Chong Rae Park, ${ }^{3}$ Kun-Hong Lee,, ${ }^{2, *}$ and Seung Min Kim ${ }^{1, *}$

${ }^{1}$ Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, South Korea
${ }^{2}$ Department of Chemical Engineering, Pohang University of Science \& Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
${ }^{3}$ Carbon Nanomaterials Design Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
${ }^{4}$ Department of Chemistry, Chonbuk National University, Baekje-daero 567, Deokjingu, Jeonju, Jeonbuk, 54896, South Korea
\dagger These authors contributed equally.

[^0]
1. Pressure equilibrium constants of decomposition of various hydrocarbons

Fig S1. Pressure equilibrium constants of various chemical reactions with respect to temperature. ${ }^{1}$

2. Calculation of Reynolds number

When the flow rate was $3700 \mathrm{~cm}^{3}$, the Reynolds number is

Reynolds number in the tube

$$
\begin{aligned}
& =\frac{\rho v d}{\mu}=\frac{v d}{v}=\frac{Q d}{A v}=\frac{3700 \mathrm{~cm}^{3} \mathrm{~min}^{-1} \times 10^{-6} \mathrm{~m}^{3} \mathrm{~cm}^{-3} \times \frac{1}{60} \mathrm{mir}}{117.8 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1} \times \pi \times(3} \\
& =11
\end{aligned}
$$

Where ρ is the density of the gas, v is the flow velocity, d is the diameter of the tube, μ is the viscosity of the gas, v is the kinematic viscosity, Q is the flow rate, and A is the cross-sectional area of the tube.

3. Cross sections of CNT/C composite fibers

Fig. S2. Cross-sectional SEM images of (a)-(b) pristine CNT yarn, CNT yarn after CVI process
(c)-(d) at $700{ }^{\circ} \mathrm{C}$ for 1 hour, (e)-(f) at $700{ }^{\circ} \mathrm{C}$ for 5 hours, (g)-(h) at $650{ }^{\circ} \mathrm{C}$ for 5 hours, and
(i)-(j) at $750^{\circ} \mathrm{C}$ for 5 hours

Reference

1. Modell, M.; Reid, R. C., Thermodynamics and Its Applications. Prentice-Hall: Upper Saddle River, N.J., 1983.

[^0]: *Corresponding author.

 E-mail address: ce20047@postech.ac.kr (K. -H. Lee), seungmin.kim@kist.re.kr (S. M. Kim)

