Supporting Information

Bandgap Tunable Cs_x(CH₃NH₃)_{1-x}PbI₃ Perovskite Nanowires by

Aqueous Solution Synthesis for Optoelectronic Devices

Dongdong Dong⁺, Hui Deng⁺, Chao Hu, Huaibing Song, Keke Qiao, Xiaokun Yang, Jian Zhang, Fensha Cai, Jiang Tang, Haisheng Song^{*}

Figure S1. (a) The successively photographs of PbI_2 , $CsPbI_3$, $CH_3NH_3PbI_3$ and $Cs_{0.5}(CH_3NH_3)_{0.5}PbI_3$ in aqueous solution. (b) Solubility of PbI_2 in aqueous solution evolved with temperature. (c) Optic microscope graph of PbI_2 nanoflake separated out from PbI_2 saturated solution by temperature reduction. (d) XRD spectra of $CH_3NH_3PbI_3$, $Cs_{0.5}(CH_3NH_3)_{0.5}PbI_3$ and CsPbI3 perovskite NWs. (e) pure NWs obtained from 2D PbI_2 precursor. (f) Nanorods and particles from PbI_2 powder

precursor.

Figure S2. (a, c, e) the TEM graphs of CsPbI₃ NW (a), CH₃NH₃PbI₃ NW (c) and $Cs_x(CH_3NH_3)_{1-x}PbI_3$ NW (e). (b, d, f) the EDS spectra of pure CsPbI₃ NW (b), CH₃NH₃PbI₃ NW (d) and Cs_{0.5}(CH₃NH₃)_{0.5}PbI₃ NW (f) from selected areas.

Figure S3. Electron beam illumination stability of three kinds of perovskite NWs: $CsPbI_3$ (a, b), $CH_3NH_3PbI_3$ (c, d) and $Cs_{0.5}(CH_3NH_3)_{0.5}PbI_3$ (e, f). The electron beam irradiation demonstrates the improved stability by Cs^+ introduction.

Table S1 Performance summary of perovskite nanowire photodetector.

Device structure	Responsivity	EQE	Rise/Decay	Year	Ref
	(A/W)	(%)	time		
Au/CH ₃ NH ₃ PbI ₃	13.5	-	80 µs/240 us	2016	1
mcrowire/Au					
ITO/ CsPbBr ₃	0.25	53	19 μs/ 25μs	2016	2
nanosheet/ITO					
Au/CH ₃ NH ₃ PbI ₃	5×10-3	-	-	2016	3
nanowire/Au					
Au/CH ₃ NH ₃ PbI ₃	2.24	36.16	71 μs/112 μs	2016	4
single crystal/Au					
Au/CH ₃ NH ₃ PbI ₃	0.1	-	300 µs/400 µs	2015	6
network/Au					
Au/CH ₃ NH ₃ PbI ₃	1.32	-	200 μs/300 μs	2015	5
nanowire/Au					
Au/porous	-	-	120 ms/86 ms	2015	7
CH ₃ NH ₃ PbBr ₃					
nanowires/Au					
Au/ single	23	5.4×10 ³	10 ms/20 ms	-	This work
Cs _{0.5} (CH ₃ NH ₃) _{0.5} P					
bI3 nanowire/Au					

Fig. S4 One typical AFM (Atomic Force Scanning Microscope) image of PbI_2 flake. The thickness is ~5 nm.

Fig. S5 Optical images of perovskite nanowires: (a) $CH_3NH_3PbI_3$ nanowire; (b) $Cs_{0.5}(CH_3NH_3)_{0.5}PbI_3$ nanowire; (c) CsPbI3 nanowires.

Fig. S6 The rise and decay time of photodetectors.

Reference

1 W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.-T. Lee, and J. Jie, *Adv. Mater.*, 2016, **28**, 2201-2208.

2 J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, *Adv. Mater.*, 2016, **28**, 4861-4869.

3 Q. Hu, H. Wu, J. Sun, D. Yan, Y. Gao, and J. Yang, Nanoscale, 2016, **8**, 5350-5357. 4 J. Ding, H. Fang, Z. Lian, J. Li, Q. Lv, L. Wang, J.-L. Sun, and Q. Yan, *CrystEngComm*, 2016, **18**, 4405-4411.

5 H. Deng, D. Dong, K. Qiao, L. Bu, B. Li, D. Yang, H.-E. Wang, Y. Cheng, Z. Zhao, J. Tang, H. Song, *Nanoscale*, 2015, **7**, 4163.

6 H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y.-B. Cheng, J. Tang, H. Song, *Nano Lett.*, 2015, **15**, 7963-7969.

7 S. Zhuo, J. Zhang, Y. Shi, Y. Huang, B. Zhang, Angew. Chem., 2015, 127, 5785-5788.