Supporting Information

Designed synthesis of MO_x (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, Au

nanoparticles supported on hierarchical CuO hollow structures

Zailei Zhang, Ji Chul Jung, Ning Yan*

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore.

*To whom correspondence should be addressed. E-mail address: ning.yan@nus.edu.sg

Fig. S1 SEM image (a) and XRD pattern (b) for Cu_2O cubes.

Fig. S2 TG curves for oxidation the Cu₂O cubes at different calcination temperature and time in air.

Fig. S3 SEM images of Cu₂O@CuO core-shell cubes after oxidation at 350 °C for 1 h (a and b), 350 °C for 2 h (c), 300 °C for 1 h (d), 300 °C for 2 h (f) in air, and TEM image of Cu₂O@CuO core-shell cubes after oxidation at 300 °C for 1 h (e).

Fig. S4 XRD patterns for Cu₂O@CuO core-shell cubes after oxidation at 350 °C for 1 h, 350 °C for 2 h, 300 °C for 1 h, and 300 °C for 2 h.

Fig. S5 Photographs of 2.3420 g Cu₂O cubes (a) and 0.7206 g CuO/Fe₂O₃ hollow cubes (b).

Fig. S6 SEM images of Cu₂O octahedrons (a), Cu₂O@CuO core-shell octahedrons after calcination at 300 °C for 1h in air (b), and XRD patterns for Cu₂O and Cu₂O@CuO core-shell octahedrons (c).

Fig. S7 SEM images of Cu₂O spheres (a), Cu₂O@CuO core-shell spheres after oxidation at 300 °C for 1 h in air (b), and XRD patterns for Cu₂O and Cu₂O@CuO core-shell spheres (c).

Fig. S8 XRD pattern for CuO/SnO₂ hollow cubes.

Fig. S9 XRD pattern for CuO/ZnO hollow cubes.

Fig. S10 EDX analyses of CuO/MgO (a), CuO/Ag₂O (b), CuO/Mn₂O₃ (c), CuO/NiO (d), CuO/CeO₂ (e), CuO/CoO (f), CuO/Au (g), and CuO/Pt (h) hollow cubes.

Ó

Fig. S11 XRD patterns for CuO/MgO, CuO/Ag₂O, CuO/Mn₂O₃, CuO/NiO, CuO/CeO₂, CuO/CoO, CuO/Au, and CuO/Pt hollow cubes.

Fig. S12 SEM images (a and b) and XRD pattern (c) for CuO/SnO₂ hollow cubes after oxidation in air at 500 $^{\circ}$ C.

Fig. S13 SEM image (a) and XRD pattern (b) for CuO/ZnO hollow cubes after oxidation in air at 500 $^{\circ}$ C.

Fig. S14 SEM images (a and b) and XRD pattern (c) for CuO/Fe₂O₃ hollow cubes after oxidation in air at 500 $^{\circ}$ C.

Fig. S15 SEM image (a) and XRD pattern (b) for CuO/NiO hollow cubes after oxidation in air at 500 $^{\circ}$ C.

Fig. S16 XRD pattern for CuO/ZnO/Cu₂O yolk-shell cubes.

Fig. S17 XRD pattern for CuO/SnO₂/Cu₂O yolk-shell cubes.

Fig. S18 SEM image (a) and XRD pattern (b) for CuO cubes after oxidation in air at 500 °C.

Fig. S19 N_2 adsorption-desorption isotherms (a) and their pore size distributions (b) of CuO cubes and CuO/ZnO hollow cubes (For clarity, the isotherm of CuO/ZnO hollow cubes was vertically shifted for 10 cm³/g. Also, the pore size distribution of the samples was determined by applying the Barrett-Joyner-Halenda (BJH) method to the adsorption branch in the obtained N_2 adsorption-desorption isotherm).

Fig. S20 XRD pattern of the prepared ZnO powder.

Fig. S21 XRD pattern (a) and SEM image (b) of the used CuO/ZnO hollow cubes after a catalytic chitin conversion at 300 °C for 4 h.

Fig. S22 Typical GC-MS chromatogram after TMS derivatization. For simplification, the corresponding molecular formulas are presented in the Figure instead of the TMS derivate molecules. After the catalytic reaction, the dodecane is added as a reference.

Fig. S23 TEM image (a) and SEM image (b) of CuO/ZnO double-shell hollow cubes after four cycle tests for benzyl alcohol oxidation.

Conversion	240°C	260°C	280°C	300°C
CuO	20.6	25.1	30.5	36.2
CuO/ZnO	24.3	30.2	42.5	50.3
CuO+ZnO ^a				43.6
Without catalyst	/	/	/	12.0
CuO/ZnO in	1	/	/	20.1
5 ml toluene	1	1	1	20.1

Table S1. Effect of reaction temperature on the conversion of chitin over CuO, CuO/ZnO hollow cubes, and CuO+ZnO catalysts.

Reaction conditions: 5 ml methanol, 100 mg chitin, 50 mg CuO, CuO/ZnO, CuO+ZnO catalysts, 400 rpm, reaction time 4 h. After the catalytic reaction, the dodecane was added as an internal standard. ^aCuO+ZnO catalyst was prepared by a physical mixing of 49 mg CuO solid cubes and 11 mg ZnO power, which was obtained via calcination of zinc nitrate $(Zn(NO_3)_2)$ at 500 °C for 2 h under static air condition. For the confirmation of successful formation, XRD patterns of the prepared ZnO powder was also presented in Fig. S20. **Table S2.** The conversion of benzyl alcohol and selectivity of benzaldehyde (1) and benzoic acid (2) over CuO or without CuO catalysts in air and pure O_2 condition.

ОН	$\begin{array}{c} CuO \\ O_2 \text{ or air } 100 ^{\circ}C \end{array}$		OH 2
Samples	Conversion/%	Selectivity of 1/%	Selectivity of 2/%
Air 100°C (CuO)	0.3	~100	~0
Air 100°C without catalyst	~0	~0	~0
100°C 0.5 MPa O ₂ (CuO)	0.5	~100	~0
100°C 0.5 MPa O ₂ without catalyst	~0	~0	~0

Reaction conditions: 0.58 mmol benzyl alcohol, 3.0 ml toluene, 500 rpm, 20 mg CuO catalyst, reaction time 12 h. After the catalytic reaction, the dodecane is added as a reference.

Table S3. The conversion of benzyl alcohol and selectivity of benzaldehyde (1) and benzoic acid (2) over CuO, CuO/Ag₂O, CuO/Pt and CuO/Au catalysts in pure O_2 condition.

$\bigcup_{i=1}^{OH} \xrightarrow{O_{i}}_{i} H \qquad \bigcup_{i=1}^{O_{i}} H \qquad \bigcup_{i=1}^{O_{i}} H \qquad \bigcup_{i=1}^{OH} 2$ $\bigcup_{i=1}^{OH} \frac{CuO/Pt, Au, Ag_2O}{pure O_2} \qquad + \qquad \bigcup_{i=1}^{OH} H \qquad \bigcup_{i=1}^{OH} 2$							
Samples	Conversion/%	Selectivity of 1/%	Selectivity of 2/%	TOF $(h^{-1})^a$			
CuO	~0	~0	~0				
CuO/Au	43.6	~100	~0	2.0			
CuO/Pt	61.2	~100	~0	3.5			
CuO/Ag ₂ O	1.0	~100	~0				

Reaction conditions: 0.58 mmol benzyl alcohol, 3.0 ml toluene, 500 rpm, 20 mg catalyst, 0.5 MPa O_2 , reaction time: 18 h, reaction temperature: 50 °C, benzyl alcohol : Pt = 102 : 1 (molar), benzyl alcohol : Au = 84 : 1 (molar). After catalytic reaction, dodecane was added as a reference. ^a TOF was calculated on the basis of total loading of Pt and Au.