Electronic Supplementary Information:

In-situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as an efficient metal-free electrocatalyst towards the oxygen reduction reaction

Tingsheng Zhou,^{ab} Yao Zhou,^b Ruguang Ma,^b Zhenzhen Zhou,^b Guanghui Liu,^b Qian Liu,^{bc}* Yufang Zhu,^{a*} and Jiacheng Wang^{bc}*

^a School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China. Email: yfzhu@usst.edu.cn

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructure,
Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road,
Shanghai 200050, P. R. China. Email: jiacheng.wang@mail.sic.ac.cn;
qianliu@sunm.shcnc.ac.cn

^cShanghai Institute of Materials Genome, Shanghai, P. R. China.

Fig. S1 N_2 adsorption-desorption isotherm loop of (a) HPSs and (c) HCSs; BJH desorption pore size distribution of (b) HPSs and (d) HCSs.

Fig. S2 EDX spectra of NHCS-2.

Fig. S3 High-resolution XPS spectra of the NHCS-1 and NHCS-3.

Fig. S4 Comparison of CV curves of the HCS, NHCS-1, NHCS-2 and NHCS-3 with scanning rates of 50 mV s⁻¹ in O_2 -statured 0.1 M KOH solution.

Fig. S5 LSV curves of the (a) HCSs, (b) NHCS-1 and (c) NHCS-3 in O_2 saturated 0.1 M KOH solution at a different rotation rate from 400 to 2025 rpm; (d) Limit current density of the samples and commercial 20% Pt/C in O_2 saturated 0.1 M KOH solution at a rotation rate of 1600 rpm.