Supporting Information

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Abel Santos^{1,2,3*}, Cheryl Suwen Law^{1,2}, Dominique Wong Chin Lei^{1,4}, Taj Pereira¹ and Dusan Losic¹

¹School of Chemical Engineering, The University of Adelaide, Engineering North Building, 5005 Adelaide, Australia
²Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, 5005 Adelaide, Australia.
³ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, 5005 Adelaide, Australia.
⁴Temasek Polytechnic, 21 Tampines Avenue 1, 529757 Singapore, Singapore.

*E-Mail: abel.santos@adelaide.edu.au

Figure S1. UV-visible-NIR transmission spectra of NAA-GIFs produced by ASPA using a linear positive apodization function at different pore widening times.

Figure S2. UV-visible-NIR transmission spectra of NAA-GIFs produced by ASPA using a linear negative apodization function at different pore widening times.

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Figure S3. UV-visible-NIR transmission spectra of NAA-GIFs produced by ASPA using a logarithmic positive apodization function at different pore widening times.

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Figure S4. UV-visible-NIR transmission spectra of NAA-GIFs produced by ASPA using a logarithmic negative apodization function at different pore widening times.

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Figure S5. UV-visible-NIR transmission spectra and digital pictures of NAA-GIFs produced by SPA (non-apodized) as a function of the anodisation period and the pore widening time.

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Figure S6. UV-visible-NIR transmission spectra and digital pictures of NAA-GIFs produced by ASPA (logarithmic negative with A_{max} - A_{min} = 0.210 mA cm⁻²) as a function of the anodisation period and the pore widening time.

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Figure S7. UV-visible-NIR transmission spectra and digital pictures of NAA-GIFs produced by SPA (non-apodized) as a function of the anodisation time and the pore widening time.

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Figure S8. UV-visible-NIR transmission spectra and digital pictures of NAA-GIFs produced by ASPA (logarithmic negative with A_{max} - A_{min} = 0.210 mA cm⁻²) as a function of the anodisation time and the pore widening time.

Fine Tuning of Optical Signals in Nanoporous Anodic Alumina Photonic Crystals by Apodized Sinusoidal Pulse Anodisation

Table S1 compiles the different values of A_{max} , A_{min} and A_{max} - A_{min} used to produce apodized NAA-GIFs.

<i>A_{max}</i> (mA cm ⁻²)	A _{min} (mA cm ⁻²)	<i>A_{max}−A_{min}</i> (mA cm ⁻²)
0.420	0.420	0.000 (non-apodized)
0.420	0.000	0.420
0.420	0.105	0.315
0.210	0.000	0.210
0.420	0.315	0.105
0.630	0.000	0.630
0.840	0.000	0.840