Electronic Supporting information

Highly Active Nickel-Cobalt/Nanocarbon Thin Films as Efficient Water Splitting Electrodes

B. Bayatsarmadi^a, Y. Zheng^a, V. Russo^b, Lei Ge^c, C.S. Casari^{b,*} and S.Z. Qiao^{a,*}

^a School of Chemical Engineering, University of Adelaide, Adelaide SA 5005 Australia. Email: s.qiao@adelaide.edu.au

^b Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy. carlo.casari@polimi.it

^c School of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia

Fig. S1 (a) Optical image of the Pulsed laser deposition instrument and (b) Five designed bimetallic targets to induce deposition of deferent compositions of Ni_xCo_{1-x} species.

Fig. S2 XRD spectra of Ni/NC, Ni_xCo_{1-x}/NC and Co/NC.

Fig. S3 SEM top-view of N-carbon and Ni_xCo_{1-x}/NC films.

Fig. S4 (a) TEM image (inset of a) HR-TEM image and (b) TEM-EDS spectrum of Ni_xCo_{1-x}/NC film.

Fig. S5 High-resolution N1s spectrum of Ni_xCo_{1-x}/NC film.

Fig. S6 Deconvoluted peaks of the D-G region in the Raman spectra of (a) Ni/NC, (b) $Ni_{0.5}Co_{0.5}/NC$ and (c) Co/NC.

Fig. S7 Raman spectra (metal oxide region) of Ni/NC, Ni_{0.5}Co_{0.5}/NC and Co/NC.

Fig. S8 HER Tafel plots of $Ni_{0.7}Co_{0.3}/NC$, $Ni_{0.5}Co_{0.5}/NC$, $N_{0.4}Co_{0.6}/NC$, $Ni_{0.3}Co_{0.7}/NC$ and $Ni_{0.2}Co_{0.8}/NC$ in 1.0 M KOH solution.

Fig. S9 Nyquist plots of binary Ni_xCo_{1-x}/NC at a potential of -1.5 V (vs. Ag/AgCl).

Fig. S10 Chronoamperometric response of Ni _{0.5}Co_{0.5}/NC under a constant voltage of -1.5 V (vs. Ag/AgCl) at 1.0M KOH (inset) enlarged view of the working electrode during electrochemical tests.

Fig. S11 OER Tafel plots of $Ni_{0.7}Co_{0.3}/NC$, $Ni_{0.5}Co_{0.5}/NC$, $N_{0.4}Co_{0.6}/NC$, $Ni_{0.3}Co_{0.7}/NC$ and $Ni_{0.2}Co_{0.8}/NC$ in 1.0 M KOH solution.

Fig. S12 Chronoamperometric response of $Ni_{0.5}Co_{0.5}/NC$ under a constant voltage of +0.8 V (vs Ag/AgCl) in 1.0M KOH (inset) enlarged view of the working electrode during electrochemical tests.

Fig. S13 (a) Full range OER and HER LSV of $Ni_{0.5}Co_{0.5}/NC$ and (b) comparison of overall water splitting ability of the synthesized electrocatalysts.

Fig. S14 Cyclic voltammograms (CVs) for (a) Ni/NC, (b) $Ni_{0.5}Co_{0.5}/NC$, (c) carbon-free $Ni_{0.5}Co_{0.5}$ and (d) Co/NC measured at different scan rates from 10 to 100 mV s⁻¹ and (e) corresponding plots of the current density at -0.775 V vs. the scan rate.

Fig. S15 Cyclic voltammograms (CVs) for (a) $Ni_{0.7}Co_{0.3}/NC$, (b) $Ni_{0.4}Co_{0.6}/NC$, (c) $Ni_{0.3}Co_{0.7}/NC$ and (d) $Ni_{0.2}Co_{0.8}/NC$ measured at different scan rates from 10 to 100 mV s⁻¹ and (e) corresponding plots of the current density at -0.775 V vs. the scan rate.

Sample	С	0	Ν	Ni	Со	% Ni	% Co
Ni/NC	52.56	34.12	3.67	9.65	0	100	0
Ni _{0.7} Co _{0.3} /NC	54.72	33.49	2.77	6.18	2.84	69	31
Ni _{0.5} Co _{0.5} /NC	49.63	35.58	3.36	5.47	5.96	48	52
Ni _{0.4} Co _{0.6} /NC	49.33	36.31	3.04	4.14	7.18	38	62
Ni _{0.3} Co _{0.7} /NC	49.85	35.02	2.4	4.13	8.60	32	68
Ni _{0.2} Co _{0.8} /NC	48.09	37.76	1.9	9.61	2.64	78	22
Co/NC	52.07	34.33	3.91	0	9.69	0	100

Table S1 Chemical composition details obtained from XPS analysis for all synthesized

 electrodes

Table S2 Peak positions of Raman spectra for Ni/NC, Ni_0.5Co_0.5/NC and Co/NC.

Sample	D band position (cm ⁻¹)	G band position (cm ⁻¹)	I _D /I _G
Ni/NC	1373	1543	0.52
Ni _{0.5} Co _{0.5} /NC	1376	1551	0.61
Co/NC	1377	1549	0.58

Samples	ηο (V)	η10 (V)	Tafel Slope	Reference
Ni/NC	0.184	0.406	218.8	This work
Ni _{0.7} Co _{0.3} /NC	0.110	0.303	148.7	This work
Ni _{0.5} Co _{0.5} /NC	0.048	0.176	132.1	This work
Ni _{0.4} Co _{0.6} /NC	0.088	0.225	163.6	This work
Ni _{0.3} Co _{0.7} /NC	0.116	0.276	165.8	This work
Ni _{0.2} Co _{0.8} /NC	0.161	0.367	193.2	This work
Co/NC	0.163	0.378	221.9	This work
Ni0.5Co0.5	0.077	0.282	189.3	This work
Ni ₃ S ₂ /MWCNTs	>0.200	0.480	167	Ref 1
Co@NRCNT	160	370	80	Ref 2
NiO/Ni-CNT	90	~100	82	Ref 3
Co@N-C	125	200	100	Ref 4
Ni ₂ P	95	230	87	Ref 5

 Table S3 Summary of recently reported HER electrocatalysts in 1.0 M KOH.

Samples	η0 (V)	η10 (V)	Tafel Slope	Reference
Ni/NC	1.547	1.650	100.0	This work
Ni _{0.7} Co _{0.3} /NC	1.470	1.567	76.3	This work
Ni _{0.5} Co _{0.5} /NC	1.468	1.530	62.9	This work
Ni _{0.4} Co _{0.6} /NC	1.472	1.558	80.4	This work
Ni _{0.3} Co _{0.7} /NC	1.473	1.572	80.9	This work
Ni _{0.2} Co _{0.8} /NC	1.477	1.579	82.6	This work
Co/NC	1.524	1.614	136.2	This work
Ni _{0.5} Co _{0.5}	1.502	1.623	91.6	This work
Co _{1-x} Fe _x S@N-MC	1.570	1.640	159	Ref 6
N-graphene-NiCo ₂ O ₄	1.540	1.664	156.0	Ref 7
NiCo ₂ O ₄ NNs on FTO	1.595	1.795	292.0	Ref 8
NiCo ₂ O ₄ nanowire	1.520	1.550	63.1	Ref 9
Ni-Co ₂ -O	>1.500	1.592	64.4	Ref 10
Co ₃ O ₄ -NrmGO	1.509	1.540	67.0	Ref 11
N-CG-CoO	1.514	1.570	71.0	Ref 12
Co ₃ O ₄ /MWCNT	1.585	1.840	65.0	Ref 13

Table S4 Summary of recently reported OER electrocatalysts in 1.0 M KOH.

References

- 1. T.-W. Lin, C.-J. Liu and C.-S. Dai, *Appl. Catal.*, *B: Environ.*, 2014, **154–155**, 213.
- X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková and T. Asefa, Angew. Chem. Int. Ed., 2014, 126, 4461.
- M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, *Nat. Commun.*, 2014, 5, 4695.
- J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li and X. Bao, *J. Mater. Chem. A*, 2014, 2, 20067.
- L. Feng, H. Vrubel, M. Bensimon and X. Hu, *Phys. Chem. Chem. Phys.*, 2014, 16, 5917.
- 6. M. Shen, C. Ruan, Y. Chen, C. Jiang, K. Ai and L. Lu, ACS Appl. Mater. Interfaces, 2015, 7, 1207.
- 7. S. Chen and S.-Z. Qiao, ACS Nano, 2013, 7, 10190.
- 8. H. Shi and G. Zhao, J. Phys. Chem. C, 2014, **118**, 25939.
- 9. R. Chen, H.-Y. Wang, J. Miao, H. Yang and B. Liu, *Nano Energy*, 2015, **11**, 333.
- 10. C. Zhu, D. Wen, S. Leubner, M. Oschatz, W. Liu, M. Holzschuh, F. Simon, S. Kaskel and A. Eychmuller, *Chem. Commun.*, 2015, **51**, 7851.
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, *Nat. Mater.*, 2011, 10, 780.
- S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy & Environ. Sci.*, 2014, 7, 609.
- 13. X. Lu and C. Zhao, J. Mater. Chem. A, 2013, 1, 12053.