Electronic Supplementary Information

Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting

Zhuoxun Yin,^{ac} Chunling Zhu,^{b*} Chunyan Li,^a Shen Zhang,^a Xitian Zhang^c and Yujin Chen^{a*}

^aKey Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science, Harbin Engineering University, Harbin 150001, China. E-mail: chenyujin@hrbeu.edu.cn; Fax: +86-451-82519754; Tel: +86-451-82519754

^bCollege of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China. E-mail: zhuchunling@hrbeu.edu.cn

^cKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China

*Corresponding authors.

E-mail addresses: chenyujin@hrbeu.edu.cn and zhuchunling@hrbeu.edu.cn

Tel.: +086-0451-82519754, Fax: +086-0451-82519754

Figure S1 XRD pattern of (a) Ni–P (b) $Ni_{0.78}Co_{0.22}$ –P (c) $Ni_{0.69}Co_{0.31}$ –P (d) $Ni_{0.54}Co_{0.46}$ –P (e) Co–P.

Figure S2 SEM images of (a) Ni–P (b) $Ni_{0.78}Co_{0.22}$ –P (c) $Ni_{0.69}Co_{0.31}$ –P (d) $Ni_{0.54}Co_{0.46}$ –P (e) Co–P.

Figure S3 TEM images of Ni–P catalysts. a) Low-magnification TEM image, and b) HRTEM image. Inset in b) shows the interplanar distances at marked regions.

Figure S4 TEM images of Co–P catalysts. a) Low-magnification TEM image, b) high-magnification TEM image of the outmost layer, c) HRTEM image, and inset shows lattice fringes of marked region, d) linear scanning EDX mapping and the inset shows the corresponding ADF STEM image.

Figure S5 High-magnification SEM image of the outmost layers of $Ni_{0.69}Co_{0.31}$ -P catalysts.

Figure S6 Comparison of XPS spectrum of Ni–P, Ni_{0.69}Co_{0.31}–P and Co–P catalysts. a) Ni 2p, b) Co 2p and c) P 2p.

Figure S7 Polarization curves of $Ni_{0.69}Co_{0.31}$ –P catalysts at a scan rate of 0.2 mV s⁻¹ in 0.1 M KOH

Figure S8 Polarization curves of $\rm Ni_{0.69}Co_{0.31}-P$ and $\rm IrO_2$ catalysts at a scan rate of 0.2 mV s^{-1} in 1 M KOH

Figure S9 Nitrogen adsorption and desorption isotherms of (a) Ni–P (b) $Ni_{0.78}Co_{0.22}$ –P (c) $Ni_{0.69}Co_{0.31}$ –P (d) $Ni_{0.54}Co_{0.46}$ –P (e) Co–P.

Figure S10 Comparison of XPS spectrum of $Ni_{0.69}Co_{0.31}$ -P before and after OER process. a, b) Ni 2p, c, d) Co 2p.

Figure S11 TOF data for $Ni_{1-x}Co_x$ -P catalysts is calculated based on the number of metal atoms.

Figure S12 The equivalent circuit for Nyquist plots of the Ni_{1-x}Co_x–P electrodes.

Figure S13 Polarization curves of $Ni_{0.69}Co_{0.31}$ –P catalysts for HER at a scan rate of 5 mV s⁻¹ in 0.1 M KOH

Figure S14 The TOFs of the $Ni_{1-x}Co_x$ -P catalysts at different potentials in 1.0 M KOH

Figure S15 Nyquist plots of the Ni_{1-x}Co_x–P catalysts at η_{HER} of 100 mV

Figure S16 Stability test for the $Ni_{0.69}Co_{0.31}$ -P | $Ni_{0.69}Co_{0.31}$ -P catalysts by CV scanning for 1000 cycles in 1.0 M KOH solution at a scan rate of 50 mV s⁻¹

Figure S17 Multi-step chronopotentiometric curve for the $Ni_{0.69}Co_{0.31}$ -P | $Ni_{0.69}Co_{0.31}$ -P catalysts in 1.0 M KOH solution

Figure S18 Polarization curves of $Ni_{0.69}Co_{0.31}$ -P | $Ni_{0.69}Co_{0.31}$ -P at a scan rate of 1 mV s⁻¹ in 0.1 M KOH

Figure S19 The amount of gas theoretically calculated and experimentally measured versus time for overall water splitting of $Ni_{0.69}Co_{0.31}$ -P | $Ni_{0.69}Co_{0.31}$ -P

Figure S20 a) Polarization curves of Ni–P+Co–P catalysts for OER at a scan rate of 0.2 mV s⁻¹ in 1.0 M KOH, and b) Polarization curves of Ni–P+Co–P catalysts for HER at a scan rate of 5 mV s⁻¹ in 1.0 M KOH

Figure S21 Polarization curves for the Ni–P+Co–P | Ni–P+Co–P at a scan rate of 1 mV s⁻¹ in 1.0 M KOH

Catalysts	Ni _{0.78} Co _{0.22} -P	Ni _{0.69} Co _{0.31} -P	Ni _{0.54} Co _{0.46} -P
x determined by EDS	0.23	0.33	0.48
x determined by ICP-OES	0.21	0.29	0.44
Average value	0.22	0.31	0.46

Table S1 Determination of x by EDS and ICP-OES ($x = n_{Co}/n_{Ni+Co}$, *n* molar number)

Catalysts	Overpotential at 10	Current	Electrolyte	Ref.
	mA cm ⁻² (mV vs	density at 350	concentration	
	RHE)	mV (mA cm ⁻²)	(pH)	
Ni _{0.69} Co _{0.31} -P	266	104	14	This work
Ni _{0.69} Co _{0.31} -P	276	45.5	13	This work
FeNC	390	4	13	7
sheets/NiO				
Co ₃ O ₄ C-NA	290	<29	13	8
Au@Co ₃ O ₄	≈390	2.84	13	12
NiO _x	-	20 (370 mV)	14	15
MnO/Au-GC	≈570	0.23 (400mV)	13	17
CoO _x -(a)	390	0.9 ± 0.3	14	18
CoO _x -(b) ("CoPi")	420	0.4 ± 0.1	14	18
CoFeO _x	370	7 ± 3	14	18
NiO	420	1.1 ± 0.4	14	18
NiCeO _x	430	1.6 ± 0.7	14	18
NiCoO _x	380	6 ± 3	14	18
NiCuO _x	410	1.4 ± 0.6	14	18
NiFeO _x	350	15 ± 6	14	18
NiLaO _x	410	2.5 ± 0.9	14	18

FeO _x /CFC	545	—	14	20
Ni(OH)2 films@Au	280	-	14	23
СоСо-В	390	2.019	14	25
CoCo-NS	353	8.628	14	25
NiCo-B	385	3.036	14	25
NiCo-NS	334	22.78	14	25
NiFe-B	347	10.75	14	25
MWCNTs/Ni(O H) ₂	474	-	13	27
NiOOH	>300	15	14	30
Fe ₆ Ni ₁₀ O _x	286	_	14	31
Ni –Fe films	280	—	13	32
n-NiFe LDH /NGF	337	<7.5	13	35
Ni-Co binary oxide NPL	325	_	14	45
NiCo ₂ O ₄ hollow microcuboids	290	<100	14	46
PNG-NiCo	>417	<10	14	47
Ni@[Ni ^(2+/3+) Co ₂ (OH) ₆₋₇] _x nanotube arrays	460	_	14	48
NiCo LDH nanosheets	367	<7	14	49
NiCo _{2.7} (OH) _x	350	10	14	50
Ni-CoMoO ₄	300	—	14	52

CoMn LDH	324	42.5	14	53
C03O4/NiC02O4 DSNCs	340	<22	14	54
NiOOH/Ni ₅ P ₄	290	<60	14	58
Ni ₂ P nanowires	290	—	14	59
CoP/C	360	<20	13	60
CoP -CNT	330	—	13	61
CoP hollow polyhedron	400	<5	14	62
CoP based nanoneedle arrays	281	_	14	63
CoP/rGO	340	<20	14	64
Co-P film	345	<20	14	65
nickel— phosphorous films	344	<20	14	67
Ni ₂ P NWs	400	<5	14	70
Ni-P	300	_	14	71
NG-CoSe ₂	366	<8	13	76

Catalyst	Tafel slope (mV dec ⁻¹)	Overpotential at 10 mA cm ⁻² (mV vs RHE)	Overpotential at 100 mA cm ⁻² (mV vs RHE)	Electrolyte concentration (pH)	Ref.
Ni _{0.69} Co _{0.31} -P	47	96	167	14	This work
Co@CoO/NG	122	82	221	14	19
NiCo ₂ O ₄ Hollow	49.7	110	245	14	46
Microcuboids					
NiSe/NF	43	96	>200	14	55
CoOx@CN	—	—	>200	14	56
PCPTF	—	>350	>500	14	57
Ni ₅ P ₄	—	150		14	58
CoP/C	—	>200	>250	14	60
CoP hollow	59	159	>300	0	62
polyhedron					
CoP-based	69	114	>200	14	63
nanoneedle arrays					
CoP/rGO-400	38	150	>250	14	64
Co-P film	42	94	—	14	65
CoP NCs	46	—	180	0	72
MoP ₂ NS/CC	63.6	115	_	0	74

 Table S3 Comparison of HER activity data among different catalysts.

Table	S4	Comparison	of	the	electr	oche	emical	perfor	mance	of	Ni ₀	.69C	$0_{0.31} -$
$P Ni_{0.6}$	₉ Co _{0.}	₃₁ –P as bifund	tion	al ca	talysts	for	overall	water	splitting	g in	1.0	М	КОН
with ree	cently	y published res	sults.										

Catalyst	Voltage at 10 mA cm ⁻² (V)	Voltage at 100 mA cm ⁻² (V)	Electrolyte concentration (pH)	Ref.
Ni _{0.69} Co _{0.31} -P	1.59	1.749	14	This work
Co@CoO/NG	1.6	1.7	14	19
NiCo ₂ O ₄ Hollow	1.65	—	14	46
Microcuboids				
NiSe/NF	1.63	>2	14	55
CoOx@CN	1.55	—	14	56
Ni ₅ P ₄	1.7	>2.1	14	58
Ni ₂ P	1.63	>1.75	14	59
CoP-based nanoneedle	1.61	>1.75	14	63
CoP/rGO-400	1.7	>1.8	14	64
Со-Р	>1.6	1.744	14	65
Ni–P	1.67	>1.8	14	67
Ni-P foam	1.64	2.05	14	68

Table S5 Comparison	of the	electrochemical	performance	of Ni _{0.69}	$Co_{0.31} - P$	and Ni-
P+C-P catalysts						

Catalyst	OER	HER	overall water splitting
	Overpotential at 10 mA cm ⁻² (mV vs RHE)	Overpotential at 10 mA cm ⁻² (mV vs RHE)	Voltage at 10 mA cm ⁻²
Ni _{0.69} Co _{0.31} -P	266	96	1.59
Ni-P+C-P	291	112	1.62