Electronic Supporting Information

Selective Hydrogenation of C=C bond in α , β -Unsaturated Aldehydes and Ketones over Ultra-small Pd-Au Clusters

Yifei Zhang, a,b,† Xiujuan Yang, a,† Yan Zhou, a Gao Li, a,* Zhimin Li, a Chao Liu, a Ming Bao, b,* Wenjie Shena,*

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

^bState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.

[†]Y.Z. and X.Y. contributed equally to this work.

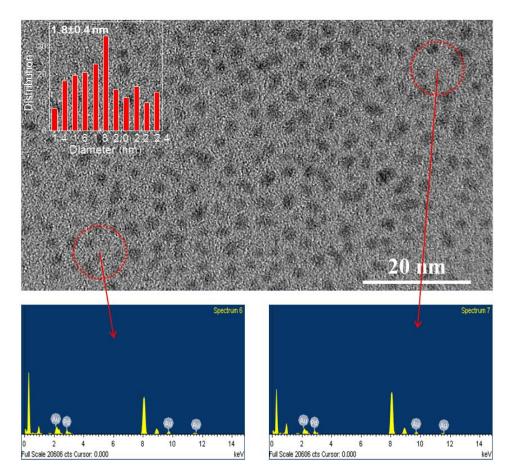
E-mail addresses: gaoli@dicp.ac.cn (G.L.); mingbao@dlut.edu.cn (M.B.); shen98@dicp.ac.cn (W.S.)

Experimental Section

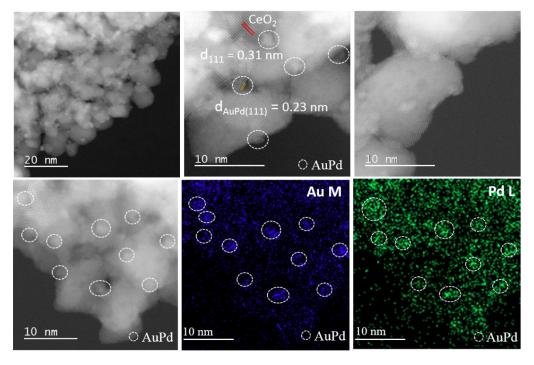
Materials Synthesis. The Pd-Au clusters were prepared through a stepwise reduction of gold and palladium salts in THF by sodium borohydride at room temperature. 56 mg H₂PdCl₄ was dissolved in 15 mL THF at room temperature, and 31 μL phenylethanethiol was then added under stirring. 0.225 mmol Au-PA (Au-C=C-Ph) was dropped into the solution and further stirred for 30 min. 5.65 mmol NaBH₄ (dissolved in 3 mL water) was rapidly added and the mixture was kept for 6 h. THF was removed via rotary evaporation; the crude product was thoroughly washed with methanol, and the Pd-Au clusters were extracted with CH₂Cl₂. The Pd-Au/CeO₂ catalyst was prepared by an impregnation method. 4 mg Pd-Au clusters was dissolved in 10 mL CH₂Cl₂, and 1.0 g CeO₂ was added. After stirring for 12 h at room temperature, the solid was collected by centrifugation and dried at 373 K under vacuum. Characterization. Scanning transmission electron microscopy (STEM) was performed on a JEOL ARM 200F operated at 200 kV. TEM was recorded on a Hitachi 7000 microscope.

Inductively coupled plasma-mass spectrometry was recorded on PerkinElmer ICP-MS NexION 300D, which showed that the metal loading on the catalyst was 0.35 wt.%.

Catalytic test. In a typical hydrogenation reaction, substrate (0.1 mL), Pd-Au/CeO₂ (50 mg), and 20 mL solvent were added into an autoclave (50 mL), and the reactor system was pressurized with H₂ to 10 Bar. The reaction was tested at 303 or 323 K for 18 h. After the reaction, the catalyst was separated by centrifugation, and the liquid product was extracted by ethyl acetate and analysed by a gas chromatograph and a mass spectrometer. The conversion of the reactant and selectivity of the products were determined on molar basis.


Table S1. Hydrogenation of cinnamaldehyde on the Pd-Au/CeO₂, Pd/CeO₂ and Au/CeO₂ catalysts.

CHO Catal.	CHO	- ОН	+ О ОН
	1	2	3


Catalyst	Conversion (%)	Selectivity (%)			
		1	2	3	
Pd-Au/CeO ₂	93	85	3	12	
Au/CeO ₂	13	65	0	35	
Pd/CeO ₂	100	80	0	20	

Reaction conditions: 0.1 mL cinnamaldehyde, 50 mg Pd-Au/CeO₂ catalysts, 20 mL dioxane, H₂ 10 bar, 323 K, 18 h.

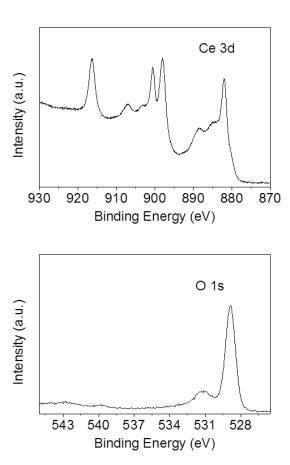

Obviously, the alloyed clusters (\sim 1.8 nm) were more selective for the hydrogenation of the C=C bond in the substrate than the monometallic clusters with similar sizes (Pd \sim 1.9 nm, Au \sim 2.0 nm).

Figure S1. TEM image and EDX profiles of the as-prepared Pd-Au clusters. Inset is the size distribution.

Figure S2. STEM images and EDS mapping of the Pd-Au/CeO₂ catalyst. Element mapping indicated that gold and palladium atoms are unfirmly distributed in the clusters, showing an alloy packing pattern.

Figure S3. XPS spectra of Ce 3d and O 1s in the Pd-Au/CeO₂ catalyst.