## One-step synthesis of ultrathin Pt<sub>x</sub>Pb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation

Liang Huang,<sup>a,b</sup> Yujie Han,<sup>a,b</sup> Xueping Zhang,<sup>a,b</sup> Youxing Fang<sup>a</sup> and Shaojun Dong<sup>\*,a,b</sup>

<sup>a</sup> State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, PR China

<sup>b</sup> University of Chinese Academy of Sciences, Beijing, 100049, PR China



**Fig. S1** Additional (a) HAADF-STEM image and (b) EDX mapping images of the Pt<sub>3.5</sub>Pb NNWs.



**Fig. S2** TEM-EDX of the Pt<sub>3</sub>Pb NNWs (a), Pt<sub>3.5</sub>Pb NNWs (b), Pt<sub>4</sub>Pb NNWs (c), and the ratio of Pt/Pb are 3:1, 3.5:1 and 4:1, respectively. (d)XRD pattern of the Pt<sub>4</sub>Pb NNWs.



**Fig. S3** Representative TEM images of the products with the same reaction conditions as those of the  $Pt_{3.5}Pb$  NNWs except the use of (a, b) 0.006 mmol, (c, d) 0.0048 mmol and (e, f) 0.0035 mmol of  $Pb(acac)_2$ .



**Fig. S4** Representative TEM images of the products with the same reaction conditions as those of the  $Pt_{3.5}Pb$  NNWs except the use of (a, b, c) 0  $\mu$ L, (d, e, f) 100  $\mu$ L, (g, h, i) 500  $\mu$ L and (j, k, l) 1 mL OAm.



**Fig. S5** TEM images of the products with the same reaction conditions as those of the  $Pt_{3.5}Pb$  NNWs except changing  $Pb(acac)_2$  with  $Pb(ac)_2$  (a-d) and in absence of  $Pb(acac)_2$  (e, f).



**Fig. S6** Representative TEM images of the products with the same reaction conditions as those of the  $Pt_{3.5}Pb$  NNWs except changing the reaction temperature to (a, b, c) 140°C and (d, e, f) 160°C.



**Fig. S7** CV curves before and after 600 potential cycles of the PtRu/C catalysts.



**Fig. S8** CV curves before and after 600 potential cycles of the  $Pt_4Pb$  NNWs,  $Pt_{3.5}Pb$  NNWs,  $Pt_3Pb$  NNWs and commercial Pt/C catalysts. The durability tests are carried out at room temperature in 0.5 M  $H_2SO_4$  solution at a sweep rate of 50 mV s<sup>-1</sup>.



**Fig. S9** (a) CV of different catalysts were recorded at room temperature in  $N_2$ -saturated 0.5 M H<sub>2</sub>SO<sub>4</sub> solution with a sweep rate of 50 mV s<sup>-1</sup>. (b) variation of normalized ECSA during 600 cycles for the Pt<sub>x</sub>Pb NNWs and the commercial Pt/C catalysts.



Fig. S10 CV of MOR on the  $Pt_3Pb$  NNWs and  $Pt_4Pb$  NNWs at different scan rates in acidic condition (a, c) and the corresponding plot of  $j_m$  versus the  $v^{1/2}$  (b, d), respectively.



**Fig. S11** CV of the  $Pt_{3.5}Pb$  NNWs and commercial Pt/C catalysts for 600 cycles in acidic (a, b) and alkaline (c, d) conditions, respectively.



**Fig. S12** (a) low-magnification and (b) high-magnification TEM image of the  $Pt_{3.5}Pb$  NNWs after 600 potential cycles.



Fig. S13 Representative TEM images of the commercial Pt/C catalysts (a, b) before and (c, d) after 600 potential cycles.



Fig. S14 TEM images of the PtRu/C catalysts.

| Table S1. MOR | performance | of various | electrocatalysts |
|---------------|-------------|------------|------------------|
|---------------|-------------|------------|------------------|

| Catalysts                 | Electrolyte solution                                            | Peak current      | Mass activity | Specific activity | Ref.       |
|---------------------------|-----------------------------------------------------------------|-------------------|---------------|-------------------|------------|
|                           |                                                                 | potential $(V)^*$ | $(A mg^{-1})$ | $(mA cm^{-2})$    |            |
| Pt <sub>3.5</sub> Pb NNWs | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 1 M CH <sub>3</sub> OH   | 0.66              | 1.18          | 2.78              | This work  |
| Pt <sub>3</sub> Ti/C      | 0.1 M HClO <sub>4</sub> + 1 M CH <sub>3</sub> OH                | 0.70              | 0.149         | 0.307             | S1         |
| Pt <sub>3</sub> V/C       |                                                                 | 0.72              | 0.200         | 0.384             |            |
| Pt-Sn                     | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5 M CH <sub>3</sub> OH |                   | 0.346         | 2.30              | S2         |
| Pt <sub>3</sub> Co        | 0.1 M HClO <sub>4</sub> + 0.1 M CH <sub>3</sub> OH              | 0.71              | 1.02          | 1.95              | <b>S</b> 3 |
| Pt-Au                     | 0.1 M HClO <sub>4</sub> + 0.5 M CH <sub>3</sub> OH              | 0.82              | 0.80          | 2.25              | S4         |
| Pt-Ru                     | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 0.5 M CH <sub>3</sub> OH | 0.71              | 0.074         | 0.76              | S5         |
| Pt-Ru/C                   | 0.5 M H <sub>2</sub> SO <sub>4</sub> + 1 M CH <sub>3</sub> OH   |                   | 0.44          |                   | S6         |
| Pt <sub>3.5</sub> Pb NNWs | 0.5 M KOH + 1 M CH <sub>3</sub> OH                              | -0.11             | 2.84          | 6.51              | This work  |
| $Pt_1Pb_1/C$              | 1 M NaOH + 1 M CH <sub>3</sub> OH                               | 0.1               | 1.93          | 4.30              | S7         |
| Pd-Ni-Pt                  | 0.1 M KOH + 0.05 M CH <sub>3</sub> OH                           |                   |               | 1.55              | <b>S</b> 8 |
| Au/Pt-Cu                  | 1 M KOH + 1 M CH <sub>3</sub> OH                                | -0.06             | 1.50          |                   | S9         |
| Pt-Ru/TiO <sub>2</sub>    | 0.5 M NaOH + 0.5 M CH <sub>3</sub> OH                           | -0.10             |               | 3.438             | S10        |
| Pt-Ru/C                   |                                                                 | 0.1               |               | 3.20              |            |

\* The peak current potential were corresponding to Ag/AgCl (saturated KCl) electrode.

## Reference

- (S1) Z. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruna and F. J. DiSalvo, J. Am. Chem. Soc., 2014, 136, 10206-10209.
- (S2) Q. Chen, Y. Yang, Z. Cao, Q. Kuang, G. Du, Y. Jiang, Z. Xie and L. Zheng, Angew. Chem., Int. Ed., 2016, 128, 9167-9171.
- (S3) L. Bu, S. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. Yao, J. Guo and X.

Huang, Nat. Commun., 2016, 7, 11850.

- (S4) H. You, F. Zhang, Z. Liu and J. Fang, ACS Catal., 2014, 4, 2829-2835.
- (S5) Z. Lin, W. Chen, Y. Jiang, T. Bian, H. Zhang, J. Wu, Y. Wang and D. Yang, *Nanoscale*, 2016, 8, 12812-12818.
- (S6) E. Lee, A. Murthy and A. Manthiram, J. Electroanal. Chem., 2011, 659, 168-175.
- (S7) Q. Jiang, L. Jiang, J. Qi, S. Wang and G. Sun, *Electrochim. Acta*, 2011, 56, 6431-6440.
- (S8) B. T. Sneed, A. P. Young, D. Jalalpoor, M. C. Golden, S. Mao, Y. Jiang, Y. Wang and C. K. Tsung, ACS Nano, 2014, 8, 7239-7250.
- (S9) W. Hong, J. Wang and E. Wang, Small, 2014, 10, 3262-3265.
- (S10) Y. Hu, A. Zhu, C. Zhang, Q. Zhang and Q. Liu, *Inter. J. Hydrogen Energy*, 2015, 40, 15652-15662.