
Supporting Information
Macroscopic and Tunable Nanoparticle Superlattices

Honghu Zhang,Wenjie Wang, Surya Mallapragada, Alex Travesset, and David Vaknin
Ames Laboratory, Iowa State University, Ames,Iowa 50011, USA

Control experiments
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Fig. S1 GISAXS patterns as functions of Qxy and Qz for (a) pure Millipore water, (b) aqueous solution of 10 nM bare AuNPs prior to PEG func-
tionalization, (c) aqueous solution of 10 µM PEG6k-SH with no salts and (d) PEG6k-SH in 500 mM K2CO3. Intensities are displayed on logarithmic
scales

Figure S1 (a-d) shows a few GISAXS patterns from various solutions as control experiments to demonstrate the importance of
functionalizing the AuNPs with PEG and the effect of salt on the formation of superlattice structures. None of the patterns indicate
surface enrichment.
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Fig. S2 SAXS intensity profiles of aqueous suspension of unfunctionalized (bare) AuNPs (black triangles), PEG800-AuNPs without salts (green circles),
PEG6k-AuNPs without salts (blue diamonds) and PEG6k-AuNPs mixed with 500 mM K2CO3 (red squares). The solid lines are best fits using a form
factor of spherical particles with polydispersity described by a Gaussian distribution. The size distributions of nanoparticles estimated by the best fits
are D = 8.9 ± 0.8 nm (bare AuNPs), 8.7 ± 0.9 nm (PEG800-AuNPs), 8.8 ± 0.9 nm (PEG6k-AuNPs), and 8.7 ± 0.9 nm (PEG6k-AuNPs with salts). These
results show that the SAXS patterns are insensitive to the PEG shell around a AuNP (i.e., the corona) indicating that the electron density of the PEG
corona in water solution is very close to that of pure water. The curves are vertically shifted for clarity.

Figure S2 shows SAXS measurements of PEG-AuNPs and unfunctionalized (bare) AuNPs dispersed in solution (conducted at Sector
12ID-B at the Advanced Photon Source). The analysis of the measured form factors determines the size and size-distribution of the
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AuNPs. These results demonstrate that the form factor is dominated by Au cores regardless of functionalization as the corona formed
by PEG around the AuNP has practically the same electron density as that of the water solution (the SAXS data in Fig. S2 are obtained
after subtraction of the SAXS of the solvent). This is crucial to the analysis of the X-ray reflectivity analysis given in the main manuscript
that shows the ED of the film is dominated by the AuNPs and the submerged corona is practically indistinguishable from the solution.

Superlattice dependence on PEG6k-AuNPs concentrations

In the main manuscript we show the tunability of the hexagonal superlattice by varying salt concentration. Figure S3 shows the
GISAXS patterns from various concentrations of PEG6k-AuNPs at a fixed 0.5 M of K2CO3. Our theoretical model shows a dependence of
the lattice constant that is logarithmic in the AuNPs concentration.
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Fig. S3 (a) GISAXS patterns as functions of Qxy and Qz for aqueous solutions of PEG6k-AuNPs at different nanoparticle concentrations (0.05 – 10 nM)
in the presence of 0.5 M K2CO3. Intensities are displayed on logarithmic scales. (b) Horizontal linecut profiles along Qxy direction at Qz = 0.020 Å−1

integrated over Qz range 5 ×10−3 Å−1 at low Qxy range (0.02–0.07Å−1) from GISAXS patterns in (a). The plots are vertically shifted for clarity.

Short chain PEG800-AuNPs crystallization

In this Section, we present the evolution of the Gibbs monolayer from the gas- to liquid- to superlattice-crystallization of PEG800-
AuNPs both as a function of salt concentration, Fig. S4 and as a function of PEG-AuNP concentration, Fig. S5. The analysis shows that
the crystallization takes place only at much higher K2CO3 concentrations than for PEG6k-AuNPs and as expected the lattice constant
scales with the length of PEG, thus the length of PEG can be used as a knob to tune the lattice constant as well.
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Fig. S4 (a) GISAXS patterns as functions of Qxy and Qz for aqueous solutions of 5 nM PEG800-AuNPs in the absence of salts and in the presence of
different concentrations of K2CO3 (0.5 mM – 1 M). Intensities are displayed on logarithmic scales. (b) Horizontal linecut profiles along Qxy direction at
Qz = 0.020 Å−1 integrated over Qz range 5 ×10−3 Å−1 at low Qxy range (0.02–0.07Å−1) from GISAXS patterns in (a). The plots are vertically shifted for
clarity.
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Fig. S5 (a) GISAXS patterns as functions of Qxy and Qz for aqueous solutions of PEG800-AuNPs with different nanoparticle concentrations (0.05 – 10
nM) in the presence of 0.5 mM K2CO3. Intensities are displayed on logarithmic scales. (b) Horizontal linecut profiles along Qxy direction at Qz = 0.020
Å−1 integrated over Qz range 5 ×10−3 Å−1 at low Qxy range (0.02–0.07Å−1) from GISAXS patterns in (a). The plots are vertically shifted for clarity.

Estimated surface coverage of crystalline PEG-AuNP superlattices
Here, we estimate the maximum in the electron density (ED) of monolayers of 2D crystalline PEG-AuNPs based on a space filling

model using the known EDs of water and pure Au, and the 2D crystalline structures determined by GISAXS. We then compare our
calculated maximum ED to the one obtained from the X-ray reflectivity to estimate the macroscopic surface coverage of the 2D crystalline
PEG-AuNPs.
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Fig. S6 A schematic of a nanoparticle monolayer at the vapor-liquid interface with corresponding ED profile along surface-normal direction, associated
with the sectional view at the maximum ED position.

We assume that in the mono-particle layer of the 2D crystalline, all AuNPs are perfectly packed in the same plane, leading to a
maximum ED at the plane occupied by the centers of AuNPs as illustrated in Fig. S6a. The corresponding sectional view at the
maximum ED position is shown in Fig. S6b. In this maximum ED plane, the area fraction of AuNPs in the unit cell of a 2D hexagonal
crystalline is φ = Anp/A2D, where the area occupied by an AuNP is Anp = πD2/4, and the area of a 2D unit cell with a lattice constant aL

is A2D = a2
L
√

3/2. The ED of pure gold is ρAu = 79ρNA/MAu = 4.66 e/Å3, where ρ = 19.3 g/cm3, NA = 6.02×1023 mol−1 and MAu = 196.97
g/mol are bulk gold density, Avogadro number and atomic weight of gold, respectively. The ED of subphase area surrounding the AuNPs
(ρsub) is considered as ED of pure K2CO3 solution with the same concentration to the bulk (contribution of the PEG shell to the ED is
the same as that of surrounding media, which is justified by our SAXS results; see Fig. S2). Assuming that K2CO3 solids dissolved in
pure water increase the ED of aqueous solution without changing the solution volume, the ED of K2CO3 solution at the concentration
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Table S1 Maximum electron density of 2D PEG-AuNP superlattices at the vapor-liquid interface

MW [PEG-AuNPs] [K2CO3] Lattice ED of Estimated Maximum ED Estimated
of ns I constant K2CO3 solution maximum ED extracted from XRR surface coverage

PEG (nM) (M) aL (Å) ρK2CO3
(e/Å3) ρ2Dmax (e/Å3) ρmax (e/Å3) ψ

6000 5 0.005 388 ± 4 0.3342 0.532–0.540 ∼0.531 ≥ 96 %
6000 5 0.05 366 ± 5 0.3360 0.557–0.569 ∼0.557 ≥ 95 %
6000 5 0.5 322 ± 3 0.3545 0.641–0.652 ∼0.645 ≥ 98 %
6000 5 1 245 ± 2 0.3749 0.868–0.885 ∼0.695 ≥ 63 %
6000 2.5 0.5 338 ± 4 0.3545 0.613–0.626 ∼0.589 ≥ 87 %
6000 10 0.5 309 ± 3 0.3545 0.665–0.677 ∼0.617 ≥ 81 %
800 5 1 149 ± 1 0.3749 1.712–1.749 ∼1.322 ≥ 69 %
800 10 0.5 158 ± 3 0.3545 1.551–1.581 ∼1.783 ∼ 100 %

of c (in Molar) is estimated to be ρK2CO3
= ρw +68cNA/1027 = 0.334+0.0410c e/Å3. Using the space filling model, the maximum ED of

2D crystalline structure is ρ2Dmax = ρAuφ +ρsub(1−φ). The calculated maximum ED results are summarized in Table S1 below. Overall,
the estimates are close to the results measured by XRR. Applying the calculated ρ2Dmax and the measured maximum ED ρmax extracted
from XRR, the surface coverage of 2D crystalline is ψ = (ρmax−ρsub)/(ρ2Dmax−ρsub) (See Table S1). The surface coverage is nearly 100
%. We note that in this simple model the surface coverage of 2D crystalline is underestimated owing to the assumption of perfect lateral
packing of AuNPs in the same plane and the negligence of surface roughness.

Hydrodynamic size of AuNPs and PEG-AuNPs in salts

Using dynamic light scattering we estimate the hydrodynamic size of bare and PEG-capped particles. Unlike polyelectrolyte-capped
AuNPs (including ssDNA-AuNPs), as shown in Fig. S7, the hydrodynamic size distribution of PEG-AuNPs remains practically the same
in the presence of salts. This also shows that the polymer in PEG800-AuNPs is too short to behave like the theoretically infinitely long
polymer brush.
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Fig. S7 Dynamic light scattering (DLS) measurements of unfunctionalized AuNPs, PEG800-AuNPs and PEG6k-AuNPs dispersed in the bulk solution
under different conditions as indicated. The AuNPs with PEG shells clearly show larger hydrodynamic size than that of the bare Au cores (unfunction-
alized AuNPs). In addition, DLS results of PEG6k-AuNPs with or without K2CO3 indicate that the presence of K2CO3 in the solution (up to 0.5 M) have
little effect on the hydrodynamic size of nanoparticles in the bulk.

Grafting density of PEG on AuNPs
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Fig. S8 Weight loss of PEG6k-AuNPs as function of temperature. The weight loss between 300 ◦C and 450◦C corresponds to the thermal degradation
of the PEG.

Thermogravimetric analysis (TGA) is used to estimate the grafting density of PEG on AuNPs. The concentrated PEG-AuNPs is dried
at 60 ◦C for 4 hours prior to TGA measurements. The TGA is carried out under a nitrogen atmosphere from 25 to 800 ◦C at a ramp
rate of 10 ◦C/min. The weight loss between 300 ◦C and 450◦C corresponds to the thermal degradation of the PEG. For instance, the
weight loss of PEG6k-AuNPs as function of temperature is shown in Fig. S8. The weight percentage at 300 ◦C and 450◦C are 94.66 %
and 61.96 %, respectively. Therefore, 32.70 % of weight is related to the PEG6k loaded on AuNPs, and 61.96 % of weight is from pure
AuNPs. The weight of each AuNP is mnp = ρπD3/6, where ρ = 19.3 g/cm3 is bulk gold density, D = 8.8 ± 0.9 nm is the diameter of the
AuNP. The molecular weight of PEG6k is mPEG = 6000. Thus, the number of PEG6k per AuNP is n = (32.70mnp)/61.96mPEG = 367. The
grafting density is σ = n/(πD2) = 1.51 chains/nm2.

Theoretical Model

Physical parameters of PEG

There is a considerable range of values for the Kuhn length, Flory characteristic ratio Cn and Kuhn monomer mass M0 in the literature.
The values used here are calculated from Mark and Flory44, who report the values for PEG (also called PEO) in salt at the θ -point, the
exact conditions analyzed in this paper, as

〈r2〉/ml2 =C∞ = 4.1(0.4), (S1)

where 〈r2〉 is the mean square unperturbed end-to-end distance for a real chain, l2 = (2l2
co + l2

cc)/3.0 and lco = 1.43 Å, lcc = 1.53 Å are
the O−C and C−C bond lengths, and m = 3Nr is the number of bonds and Nr is the number of C−C−O groups in the polymer. The
maximum extension of a PEO chain is therefore

Rmax = (2lco + lcc)cos(θ/2)Nr = 3.64Nr (Å) , (S2)

where θ = 68◦ is the bond angle, which is the same for all three atoms in the monomer. The Kuhn length is47

b =
C∞l2m
Rmax

= 7.24 (Å) (S3)

and the equivalent number of monomers of a Gaussian chain is

N =
R2

max
C∞ml2 = 0.503Nr. (S4)

Using that the molecular weight of a PEO monomer is M1 = 2MC +MO +4MH = 44.052, it is

M0 = M1/0.503 = 87.6. (S5)
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Thus for the two PEO used in this paper, the number of independent Kuhn monomers is

N6k = 6000/87.6 = 68.5 (Nr = 136) (S6)

N800 = 800/87.6 = 9.13 (Nr = 18) . (S7)

For the PEG800, the approximation Cn ≈C∞ is certainly questionable, and explains the larger hydrodynamic radius than the theoretical
estimate.

PEG-AuNPs in solution
As described in Refs.30,31 the three component system water-salt-PEG typically separates into two phases, an all PEG solvated by

liquid A and liquid B. Liquid A consists of water and a relatively low salt concentration (a few percent weight or less), and liquid B with
a higher salt concentration of ten percent or more. Early efforts to predict the phase diagram of this three component system showed
a limited success50,51 as it was noted that there is a specific salt-PEG interaction, presumably through the ether oxygens and the salt
cations. Therefore, we consider a model where the salt is implicit, based on the following assumptions:

• Liquid A is a θ -solvent for PEG.

• Liquid B is a poor solvent for PEG.

• When equilibrium is established, an interface between liquid A and liquid B is formed with surface tension γAB.

The first assumption is justified as liquid A is the phase boundary for PEG. The second assumption follows from the fact that no PEG is
found in liquid Refs.30,31.

We consider a PEG-AuNP as consisting of n flexible chains with N monomers covalently grafted at the surface of the nanoparticle
core, whose radius is R. The grafting density is thus σ = n/4πR2. We first treat PEG-AuNPs in solution and then its crystallization at the
interface.

R

Rh

r

Fig. S9 Depiction of PEG-AuNP brush, and the parameters used.

Following Ref.46, we consider PEG as gaussian chains with three-body interactions at the θ -point (first assumption). The monomer
density at a distance r from the center is given (for r > R)

φ(r) =
R
r
(σb2)1/2(2w0)

−1/4 , (S8)

where b is the Kuhn length, σ is the grafting density and w0 is the dimensionless three-body interaction. The spherical radii Rh is
obtained by imposing that the integral of the above density is equal to the total number of monomers = Nnb3, leading(

Rh

R

)2
= 1+2

N
R/b

(σb2)1/2(2w0)
1/4 . (S9)
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For future reference, we will also need the free energy for the spherical brush at the θ point. It is given as

fr
kBT

= 4π

(
R
b

)3
(σb2)3/2(2w0)

1/4 log(1+2
N

R/b
(σb2)1/2(2w0)

1/4). (S10)

To this free energy, there is an additional term that arises from the surface tension between polymer/liquid A and liquid B. We will
assume that liquid B is a slightly poor solvent for PEG. This latter condition is defined by ξ (r = Rh) < ξT , where ξ (r) = r/R

√
σ and

ξT = b/(2χ − 1) is the thermal correlation length47, and χ > 1/2 parameterizes the quality of solvent B to PEG. In the opposite limit
ξ (r = Rh)> ξT , which is not discussed here, PEG would collapse into globules, and the size of the PEG-AuNPs is not described by Eq. S8.
The surface tension free energy is given by

fs = γAB4πR2
h . (S11)

Based on general arguments, we expect γAB ≈ kBT (2χ−1)2/b2.
Finally, because the PEG-AuNPs are in solution, there is the ideal term

Ft = NskBT (log(nsv0)−1) , (S12)

where Ns is the number of PEG-AuNPs in solution and ns = Ns/V its number density. The chemical potential of the bulk PEG-AuNPs is
given by

µB =
∂F
∂Ns

= fr + fs + kBT log(nsv0). (S13)

PEG-AuNPs at the interface
At the interface, the free energy of the PEG-AuNPs is modified in three ways: the brushes are compressed, the surface area of contact

with solvent B is much reduced, and finally, there is a reduction of translational entropy.
The stretching energy of two compressed brushes has been authoritative reviewed in Ref.48. Unfortunately, no simple expression is

available for the experimental conditions, and a full calculation is beyond the scope of this paper. Therefore, we opt for a more heuristic
derivation, based on the modified Derjaguin approximation for the excess free energy

Fe(z) = 2πR2(R+ z)
∫ H0

z

f (H)− f (H0)

(R+H)2 dH ≡ 2πR2(R+ z)
∫ H0

z

∆ f (H)

(R+H)2 dH . (S14)

Here, 2(R+ z) is the center-to-center distance of the two brushes and H0 = Rh−R is the uncompressed brush height. The quantity f (H)

is the free energy per unit area of a uniformly compressed spherical brush at a radius H < H0. It is given as

∆ f (y) =
R
b
(σb2)3/2(2w0)

1/4 1
b2 G(y) (S15)

where y = (R+ z)/Rh. Note that the function G(x) satisfies that G′(1) = 0, G′′(1)≈ 32.6 > 0, and the latter condition is the statement that
the uncompressed brush is a minimum of the free energy. Detailed derivations for these results will be published elsewhere. The actual
potential between two PEG-AuNPs is then given as

Fe(z) = 2π

(
R
b

)3
(σb2)3/2(2w0)

1/4yH(y) , (S16)

where H(y) =
∫ 1

y
dw
w2 G(w), and G(y) has been defined in the previous equation. Note that H(1) = H ′(1) = H ′′(1) = 0. For small compres-

sions, 1− y << 1, the above expression reduces to

Fe(z) = 2π

(
R
b

)3
(σb2)3/2(2w0)

1/4 G′′(1)
6

(1− y)3 . (S17)

It should be noted, however, that the exact formula shows that the approximation Eq. S17 has a small range of applicability as the
resulting potential quickly picks up significant non-harmonic contributions for y . 0.85.

We assume that the surface in contact with solvent B is the area of the plane occupied by the PEG-AuNPs at the interface. The free
energy of a single nanoparticle is given as

Fs(z) = γAB2
√

3(R+ z)2 . (S18)

Finally, the entropic term is given, within dynamic lattice theory (DLT)49.

Fd(z) = kBT (g(Rh)+ log(v0)) , (S19)

where g(z) = 1
2Ni

log
[
det( Di j

2πkBT )
]
, where Ni is the number of particles at the interface and Di j is the dynamical matrix. Although it is

possible to calculate the above determinant exactly for an hexagonal two dimensional lattice, the formula is excessively complex. We
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therefore make the free volume approximation

Fd(z) = kBT log(v0/(4πy2R3
h/3)) . (S20)

The chemical potential of the PEG-Au at the interface is given by

µI = Fs(z)+qFe(z)+Fr + kBT log(v0/(4πy2R3
h/3)) . (S21)

Equilibrium condition
The condition of equilibrium between bulk and interface leads to the equation

µI = µB , (S22)

or, in explicit form:

(4π−2
√

3)
γAB

kBT
R2

h + log(ns4πR3
h/3) = −2

√
3

γAB

kBT
R2

h(1− y2)+ (S23)

+ 2π

(
R
b

)3
(σb2)3/2(2w0)

1/4yH(y)− log(y2) ,

which determines y, and from it, the lattice constant aL from y = 2Rh−aL
2Rh

, as a function of the physical parameters. The above equations
illustrate a physical mechanism where the dramatic reduction in surface tension that occurs when particles reach the interface entirely
drives the crystallization process.

For the purposes of illustrating the physical mechanism, one can assume that the reduction of surface tension is opposed by the
stretching or compression energy, and that the small compression limit Eq. S17 can be applied. With these approximations, it follows:

(1− aL

2Rh
)3 = (4− 2

√
3

π
)

1
σb2

(
b
R

)2 6N
qG′′(1)

(
γABb2

kBT
+

b/R log(nsvl)

(8π−4
√

3)N(σb2)1/2(2w0)1/4

)
, (S24)

where vl =
4π

3 R3
h.

Quality of the solvent
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Fig. S10 Fit of the solvent quality as described below. The results are for PEG6k-AuNPs. Clearly, the last point, corresponding to 1 M K2CO3
concentration, is not consistent with a simple logarithmic dependence

From the reported values of 2Rh−aL
2Rh

(Table S1), and the assumption that the solvent quality parameter is described by the two
parameter formula

γABb2/kBT = τlog(I/I0) (S25)

a fit is performed, with I0 = 0.0046 M and τ = 0.0021. Here I is the K2CO3 concentration, [K2CO3]. Although the quality of the fit is
adequate up to about 0.5 M, it illustrates that the data is consistent with a moderately poor solvent, not far from ideal. The point at the
higher salt concentration illustrates that the surface tension grows more rapidly than the logarithmic fit Eq. S25 at high ionic strengths
consistent with the onset of precipitates into 3D solids.
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