Supporting Information for "Surface-Energy Engineered Bi-doped SnTe Nanoribbons with Weak Antilocalization Effect and Linear Magnetoresistance"

Yi-Chao Zou,^a Zhi-Gang Chen,^{a,b,*} Fantai Kong,^c Enze Zhang,^d John Drennan,^e Kyeongjae Cho,^c Faxian Xiu^d and Jin Zou^{a, e,*}

- a. Materials Engineering, University of Queensland, Brisbane, QLD 4072, Australia
- b. Centre for Future Materials, University of Southern Queensland, Springfield, QLD
 4300, Australia
- Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Key Laboratory of Surface Physics and Department of Physics, and Collaborative
 Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433,
 China
- e. Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD
 4072, Australia

S1. Supercells for Surface-Energy Calculations

Figure S1. Configurations of the adopted atomic models (after structural relaxation) for calculation of SnTe surface energies with different Bi doping concentrations.