Supporting Information

Carbon/Two-Dimensional MoTe₂ Core/Shell-Structured Microspheres as Anode Material for Na-Ion Batteries

Jung Sang Cho^{1,2}, Hyeon Seok Ju¹, Jung-Kul Lee^{3,*}, Yun Chan Kang^{1,*}

¹Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea, E-mail: <u>*vckang@korea.ac.kr*</u> ²Department of Engineering Chemistry, Chungbuk National University, Chungbuk 361-763, Republic of Korea.

³Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjingu, Seoul 143-701, Republic of Korea, E-mail: *jkrhee@konkuk.ac.kr*

Keywords: Molybdenum telluride; Sodium ion batteries; Anode materials; Carbon composite; Spray pyrolysis

Fig. S1. Schematic diagram of the spray pyrolysis applied in the preparation of the C- MoO_x composite microspheres for $MoTe_2$ -C composite microspheres as a precursor powder.

Fig. S2. Morphologies and phase analysis of the C-MoO_x composite microspheres prepared at 500 °C in N₂ atmosphere by spray pyrolysis: (a) SEM image and (b) XRD pattern.

Fig. S3. EDS analysis of the cracked $C/MoTe_2$ composite microspheres at different locations.

Fig. S4. XRD patterns of the core-shell-structured C@MoTe₂ and C/MoTe₂ composite microspheres formed at different tellurization temperatures.

Fig. S5. EDS spectrum of the C@MoTe₂ composite microspheres formed by tellurization at 600 $^{\circ}$ C.

Table S1. Elemental analysis (EA) of the C@MoTe₂ composite microspheres formed by tellurization at 600 °C.

	C (wt %)	H (wt %)	O (wt %)	N (wt %)
C@MoTe ₂	15.1	-	-	-

Fig. S6. SEM image and XRD pattern of the bare MoO_3 powders formed as an intermediate product for the bare $MoTe_2$ powders: (a) SEM image and (b) XRD pattern.

Fig. S7. Morphologies, SAED, XRD patterns, and elemental mapping images of the bare MoTe₂ powders as a comparison sample: (a) SEM image, (b) TEM image, (c,d) HR-TEM images, (e) SAED pattern, (f) XRD pattern, and (g) elemental mapping images.

Fig. S8. N_2 gas adsorption and desorption isotherms of the core-shell-structured C@MoTe₂ and C/MoTe₂ composite microspheres and bare MoTe₂ powders.

Fig. S9. (a) CV curves and (b) initial discharge-charge profiles of the bare $MoTe_2$ powders.

 R_e : the electrolyte resistance, corresponding to the intercept of high frequency semicircle at Z_{re} axis

 $R_{\rm f}$: the SEI layer resistance corresponding to the high-frequency semicircle

Q1: the dielectric relaxation capacitance corresponding to the high-frequency semicircle

R_{ct}: the denote the charger transfer resistance related to the middle-frequency semicircle

 Q_2 : the associated double-layer capacitance related to the middle-frequency semicircle

 $Z_{\rm w}$: the Na-ion diffusion resistance

Fig. S10. Randle-type equivalent circuit model used for AC impedance fitting.

TMDs	Synthesis	Electrochemical properties	Ref
MoS ₂ /C nanospheres	Hydrothermal method	400 mA h g ⁻¹ after 300 cycles at 0.67 A g ⁻¹	[S1]
MoS ₂ nanosheet/CNTs	Hydrothermal method	495.9 mA h g ⁻¹ after 80 cycles at 0.2 A g ⁻¹	[S2]
MoSe ₂ yolk-shell	Comercian Investor	433 mA h g ⁻¹ after 50 cycles at 0.2 A	
microspheres	Spray pyrolysis	g-1	[83]
MoSe ₂	TT double much and a d		[04]
nanosheet/MWCNTs	Hydrothermal method	459 mA n g ⁻¹ after 90 cycles at 0.2 A g ⁻¹	[54]
C-MoSe ₂ /rGO	Hydrothermal method	445 mA h g ⁻¹ after 350 cycles at 0.2 A g ⁻¹	[S5]
NiSe ₂ -rGO-C	Electro en inglia e	4(9 m A h and after 100 angles at 0.2 A and	[87]
composite nanofiber	Electrospinning	468 mA n g ⁻¹ after 100 cycles at 0.3 A g ⁻¹	[50]
FeSe ₂ Microspheres	Hydrothermal method	372 mA h g ⁻¹ after 2000 cycles at 1.0 A g ⁻¹	[S7]
Urchin-like CoSe ₂	Solvothermal method	410 mA h g ⁻¹ after 1800 cycles at 1.0 A g ⁻¹	[S8]
Nickel disulphide			
graphene nanosheets	Hydrothermal method	407 mA h g $^{-1}$ after 200 cycles at 0.087 A g $^{-1}$	[S9]
composites			
C@MoTe ₂	Company and the last		This
	Spray pyrolysis	280 mA n g ⁻¹ after 200 cycles at 1.0 A g ⁻¹	study

Table S2. Sodium-ion storage properties of various transition metal dichalcogenides materials.

- [S1] J. Wang, C. Luo, T. Gao, A. Langrock, An Advanced MoS₂/Carbon Anode for High-Performance Sodium-Ion Batteries. *Small* 11, 473–481 (2015).
- [S2] S. Zhang, X. Yu, H. Yu, Y. Chen, P. Gao, C. Li, C. Zhu, Growth of Ultrathin MoS₂ Nanosheets with Expanded Spacing of (002) Plane on Carbon Nanotubes for High-Performance Sodium-Ion Battery Anodes. *ACS Appl. Mater. Interfaces* 6, 21880– 21885 (2014).
- [S3] Y. N. Ko, S. H. Choi, S. B. Park, Y. C. Kang, Hierarchical MoSe₂ yolk-shell microspheres with superior Na-ion storage properties. *Nanoscale* 6, 10511–10515 (2014).
- [S4] Z. Zhang, X. Yang, Y. Fu, K. Du, Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sources 296, 2–9 (2015).
- [S5] D. Xie, W. Tang, Y. Wang, X. Xia, Y. Zhong, D. Zhou, D. Wang, X. Wang, J. Tu, Facile fabrication of integrated three-dimensional C-MoSe₂/reduced graphene oxide composite with enhanced performance for sodium storage. *Nano Research* 9, 1618–1629 (2016).

- [S6] J. S. Cho, S. Y. Lee, Y. C. Kang, First Introduction of NiSe₂ to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe₂/C Porous Nanofiber. *Sci. Rep.* 6, 23338 (2016).
- [S7] K. Zhang, Z. Hu, X. Liu, Z. Tao, J. Chen, FeSe₂ Microspheres as a High-Performance Anode Material for Na-Ion Batteries. *Adv. Mater.* 27, 3305–3309 (2015).
- [S8] K. Zhang, M. Park, L. Zhou, G. Lee, W. Li, Y. Kang, J. Chen, Urchin-Like CoSe₂ as a High-Performance Anode Material for Sodium-Ion Batteries. *Adv. Funct. Mater.* DOI:10.1002/adfm.201602608 (2016).
- [S9] T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong, G. Cui, Nickel Disulfide–Graphene Nanosheets Composites with Improved Electrochemical Performance for Sodium Ion Battery. ACS Appl. Mater. Interfaces 8, 7811–7817 (2016).