Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

1	Supporting Information
2	
3	Three dimensional plasmonic assemblies of AuNPs with overall size of sub-200 nm for chemo-
4	photothermal synergistic therapy of breast cancer ⁺
5	Vyonghi Via ah Viaguia Wyoh Lingtoi Zhao a Linghyn Zhao G Zihov Lih Wanghi Dan h Vyohan Tian h
07	A igue Li d Zhovu Shen ^{*b} and Aigue Wu ^{*b}
/ 8	Alguo Li, "Zheyu Sheh " and Alguo wu
9	^a School of Material Science and Engineering Shanghai University 149 Yanchang Road Shanghai
10	200072. China.
11	^b Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing
12	Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo
13	Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-
14	guan West Road, Zhen-hai District, Ning-bo, Zhe-jiang 315201, P. R. China.
15	^c Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological
16	and Physiological Technology, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211,
17	China.
18	^d Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy
19	of Sciences, Shanghai, 201204, China.
20	† Electronic supplementary information (ESI) available.
21	
22	Corresponding Authors
23	*E-mail: shenzheyu@nimte.ac.ch; 1ei: $+865/48/61/2/8$
24 25	·E-man. arguo@mmte.ac.cn, 1et. +80 574 80085105
25 26	
20	Table of Contents
28	Figure S1. Characterization of the AuNPs-DOX@BSA by TEM_DLS and UV-vis S2.
29	Figure S2. Infrared thermal imaging and photothermal heating curves
30	Figure S3. Stability of the AuNPs-DOX-BSA4-FA in aqueous solution
31	Figure S4. The release behavior of DOX from AuNPs-DOX@BSA4-FA
32	Figure S5. XFM images of the MCF-7 cells
33	Figure S6. Cell viability of MCF-7 cells treated with laser irradiation
34	Figure S7. The in vivo distribution of AuNPs-DOX@BSA4-FA
35	Figure S8. Representative photos of MCF-7 tumor-bearing mice
36	Figure S9. Photos of tumor-bearing mice after injection of saline
37	Figure S10. Photos of tumor-bearing mice after injection of free DOX
38	Figure S11. Photos of tumor-bearing mice after injection of AuNPs-DOX@BSA4-FAS12
39	Figure S12. Photos of tumor-bearing mice after injection of AuNPs-DOX@BSA4-FA with laser
40	Irradiation

Figure S1. Characterization of the AuNPs-DOX@BSA by TEM, DLS and UV-vis. (a-d): TEM
image of AuNPs-DOX@BSA1-4; (e): Size distribution of AuNPs-DOX@BSA1-4; (f): UV-vis
absorbance spectra of AuNPs-DOX@BSA2-4.

1

2 Figure S2. Infrared thermal imaging and photothermal heating curves for AuNPs-DOX@BSA4
3 aqueous dispersion at 1.0 mg/mL with an 808 nm of NIR laser irradiation and various power
4 density (0.25-1.5 W/ cm²).

2 Figure S3. Change in size distribution of the AuNPs-DOX-BSA4-FA measured by DLS during
3 storage at 4 °C.

- 2 Figure S4. The release behavior of DOX from AuNPs-DOX@BSA4-FA at pH 7.4 or 5.5 with or
- 3 without a 808 nm laser irradiation (1.5 W/cm^2 , 5 min).

2 Figure S5. XFM images of the MCF-7 cells incubated with AuNPs-DOX@BSA4-FA for 4 h
3 showing element fluorescence of Cl, S and Au. The MCF-7 cells without incubation of AuNPs4 DOX@BSA4-FA is used as the control.

1

2 Figure S6. Cell viability of MCF-7 cells treated with laser irradiation (808 nm, 2.0 W/cm²) for
3 various irradiation time without administration of any nanoparticles.

2 Figure S7. The in vivo biodistribution of AuNPs-DOX@BSA4-FA after 24 h of intravenous
3 injection (200 μL, 2.0 mg/mL).

2 Figure S8. Representative photos of the four groups (Saline, DOX, AuNPs-DOX@AN4-FA, or

3 AuNPs-DOX@AN4-FA + Laser) of MCF-7 tumor-bearing mice during the period of therapies.

4

2 Figure S9. The photos of five MCF-7 tumor-bearing mice after injection of saline (saline group).

2 Figure S10. The photos of five MCF-7 tumor-bearing mice after injection of free DOX (DOX3 group).

- 2 Figure S11. The photos of five MCF-7 tumor-bearing mice after injection of AuNPs-DOX@BSA4-
- 3 FA (AuNPs-DOX@BSA4-FA group).
- 4

- 2 Figure S12. The photos of five MCF-7 tumor-bearing mice after injection of AuNPs-DOX@BSA4-
- 3 FA and laser irradiation (AuNPs-DOX@BSA4-FA + L group).
- 4