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Fig. S1. Zeta potential of CdS Ns@L-cysteine and Au@DMAP NPs aqueous suspensions.
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Fig. S2. FTIR spectra of L-cysteine, CdS Ns, DMAP and Au@DMAP NPs.

Note: Fig. S2 shows the FTIR spectra of L-cysteine, CdS Ns, DMAP and Au@DMAP NPs.
Noteworthily, the characteristic peaks at 556, 1132, 1388 and 2030 cm™! in the FTIR spectrum of
Au@DMAP NPs are attributed to the functional groups of DMAP ligand, which is in faithful
agreement with FTIR spectrum of pure DMAP, indicating DMAP has been successfully attached on
the surface of Au NPs. Similarly, the featured peaks at 536, 1061, 1395 and 1611 cm™! in the FTIR
spectrum of CdS Ns can be accurately assigned to the functional groups of L-cysteine, which also
agrees well with FTIR spectrum of pure L-cysteine, suggesting that L-cysteine has also been

successfully tethered on the CdS Ns surface.
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Fig. S3. Size distribution of Au@DMAP NPs (217 nanoparticles counted).

Fig. S4. FESEM image of CdS Ns.
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Fig. SS5. Representative AFM image and corresponding thickness analysis of CdS Ns
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Fig. S6. High-resolution XPS spectra of C 1s and O 1s for l Au-CdS Ns nanocomposite.
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Fig. S7. UV-absorption spectrum of Au@DMAP NPs aqueous suspension.

sS4



(3]
n
=]

—a— CdS Ns a
[—e— 1Au-CdS Ns

[ %]
=
=]

—

wn

=}
T

n
=
T T

(=)
T T

Quantity adsorbed (cm3 g_l STP)
2
T

1.0

b

0.0

1 1 || 1
0.2 04 0.6 0.8
Relative Pressure (P/P,)

\. —@— CdS Ns
—8— 1Au-CdS Ns

0.004 “\
- [ e
en \
mE Y
§ 0.002 - \ \.
>
e
0.000 - u
n 1 1 1 " 1 n 1 1
0 20 40 60 80 100

Pore diameter (nm)

Fig. S8. (a) N, adsorption-desorption isotherms and (b) pore size distribution of CdS Ns and 1Au-
CdS Ns nanocomposite.
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Fig. S9. (a) Photocatalytic activities of P25 and 1Au-CdS Ns for degradation of MB under visible
light irradiation (A > 420 nm) at ambient conditions with corresponding kinetic fitting curves
displayed in (b).
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Fig. S10. Photocatalytic activities of (a) CdS Ns and (b) 1Au-CdS Ns nanocomposite for five

successive cycling experiments toward degradation of MB under visible light irradiation (A > 420
nm).
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Fig. S11. PL results of CdS Ns and Au- CdS Ns nanocomposites.

Note: Au-CdS Ns nanocomposites (0.5 and 2 %) demonstrated decreased PL intensity in comparison
with CdS Ns, indicating Au NPs are beneficial for trapping photoelelctrons leading to prolonged

lifetime of photogenerated charge carriers in nanocomposites.
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Fig. S12. AQE curve (right axis) with corresponding UV-Vis diffuse reflectance spectrum (left axis)
of CdS Ns.
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Fig. S13. Time-dependent variations in the UV absorbance spectra of 4-NA catalyzed by (a) 1Au-
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CdS Ns, (c) CdS Ns nanocomposite and (e) P25 as a function of visible light irradiation time;
Photocatalytic performances of (b) 1Au-CdS Ns, (d) CdS Ns nanocomposite and (f) P25 toward
reduction of 4-NA as a function of visible light irradiation time.
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