Supporting Information

Biomass Lysine-Derived Nitrogen-doped Carbon Hollow Cubes via NaCl Crystal Template: an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions

Xiangjun Zheng^{a,b}, Xuecheng Cao^{a,b}, Xiaowei Li^{a,b}, Jinghua Tian^a, Chao Jin^a, Ruizhi Yang^{a,b*}

^aCollege of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China.
^b Institute of Chemical Power Sources, Soochow University, Suzhou, Jiangsu 215006, China.

This supporting information contains:

Fig. S1. SEM images of $C_6H_{15}O_2N_2Cl@NaCl$ (a) and NC@NaCl (b).

Fig. S2. SEM (a) and HRTEM (b) images of NC.

Table S1. The comparison between the prepared material in this work and other N-doped carbon

 materials reported.

Fig. S1. SEM images of $C_6H_{15}O_2N_2Cl@NaCl$ (a) and NC@NaCl (b).

Fig. S2. SEM (a) and HRTEM (b) images of NC.

Catalyst	Mass loading (mg cm ⁻²)	Electrolyte	$\frac{S_{BET}}{(m^2 g^{-1})}$	E _{1/2, ORR} (V)	Diffusion limited current density (mA cm ⁻²)	$\begin{array}{c} E_{OER}\\ \textcircled{0}{0}10 \text{ mA}\\ \text{cm}^{-2}\\ (\text{V}) \end{array}$	Reference
NCHCs	0.4	0.1 M KOH	347	0.80	6.19	1.71 (IR- corrected)	This work
N- CNTFs	0.2	0.1 M KOH	513	0.87	5.2	1.60 (IR- corrected)	[S1]
N-G/CNT	0.43	0.1 M KOH	364	0.70	5.0	1.65 (IR- corrected)	[S2]
N-CNC	0.1	0.1 M KOH	884	0.70	-	-	[83]
N-CNTA	0.08	0.1 M KOH	869	0.69	4.8	-	[S4]
N-NPC/G	0.2	0.1 M KOH	1170	0.82	4.8	-	[85]
N,P- carbon foam	0.15	0.1 M KOH	1548	0.85	4.0-5.0	1.80	[86]

Table S1. The comparison between the prepared material in this work and other N-doped carbon materials reported.

References:

- [S1] B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou and X. Wang, Nature Energy, 2016, 1, 15006.
- [S2] Z. H. Wen, S. Q. Ci, Y. Hou and J. H. Chen, Angew. Chem. Int. Ed., 2014, 53, 6496-6500.
- [S3] S. Chen, J. Y. Bi, Y. Zhao, L. J. Yang, C. Zhang, Y. W. Ma, Q. Wu, X. Z. Wang and Zheng Hu, *Adv. Mater.* 2012, **24**, 5593–5597.
- [S4] R. Du, N. Zhang, J. H. Zhu, Y. Wang, C. Y. Xu, Y. Hu, N. N. Mao, H. Xu, W. J. Duan, L. Zhuang, L. T. Qu, Y. L. Hou and J. Zhang, *small*, 2015, 11, **32**, 3903–3908.
- [S5] J. Wei, Y. X. Hu, Y. Liang, B. Kong, J. Zhang, J. C. Song, Q. L. Bao, G. P. Simon, S. P. Jiang and H. T. Wang, *Adv. Funct. Mater.* 2015, **25**, 5768–5777.
- [S6] J. T. Zhang, Z. H. Zhao, Z. H. Xia and L. M. Dai, *Nature nanotech.*,2015, 10, 444-452.