Supporting Information for

A novel "tunnel-like" Cyclopalladated Arylimine Catalyst

Immobilized on Graphene oxide Nano-sheet

Ziqian Xue,^a Pingping Huang,^a Tiesheng Li,^{*a} Pengxiao Qin,^a Dan Xiao,^a Minghua Liu,^{*b} Penglei Chen,^b and Yangjie Wu^{*a}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou,
450001, Henan Province, P. R. China. E-mail: lts34@zzu.edu.cn. Fax :(+) 86-371-67766667.
^b Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R China.

Table of Content

Optimization of Suzuki–Miyaura reaction conditions.	S1
Suzuki–Miyaura reaction of aryl halides with different arylboronic acids.	S1-S2
Supplementary Figures	S3-S4

Optimization of Suzuki–Miyaura reaction conditions.

Entry	Base	Solvent	Time	T(°C)	Isolated	TOF
			(min)		yield (%)	(mol mol _{Pd} ⁻¹ h ⁻¹)
1	K ₂ CO ₃	H ₂ O:EtOH(1:1)	60	70	99	1429
2	Na ₂ CO ₃	$H_2O:EtOH(1:1)$	60	70	93	1329
3	K_3PO_4	H ₂ O:EtOH(1:1)	60	70	90	1286
4	NaOH	H ₂ O:EtOH(1:1)	60	70	93	1329
5	NaOAc	H ₂ O:EtOH(1:1)	60	70	59	843
6	K ₂ CO ₃	H_2O	60	70	48	686
7	K_2CO_3	EtOH	60	70	27	386
8	K ₂ CO ₃	DMF	60	70	11	157
9	K ₂ CO ₃	MeOH	60	70	73	1043
10	K ₂ CO ₃	H ₂ O:EtOH(1:1)	45	70	99	1905
11	K_2CO_3	H ₂ O:EtOH(1:1)	30	70	99	2859
12	K_2CO_3	H ₂ O:EtOH(1:1)	20	70	99	4287
13	K ₂ CO ₃	H ₂ O:EtOH(1:1)	20	70	97^{b}	21008
14	K_2CO_3	H ₂ O:EtOH(1:1)	20	70	99 ^c	7147
15	K_2CO_3	H ₂ O:EtOH(1:1)	20	60	91 ^b	19708
16	K ₂ CO ₃	H ₂ O:EtOH(1:1)	20	50	84^b	18192
17	K ₂ CO ₃	H ₂ O:EtOH(1:1)	20	25	74^b	16026
18	K_2CO_3	H ₂ O:EtOH(1:1)	30	25	79^b	11406
19	K ₂ CO ₃	H ₂ O:EtOH(1:1)	60	25	86^b	6208
20	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	25	92^{b}	3321

Table S1 Optimization of Suzuki-Miyaura reaction conditions

^{*a*} Reaction condition: PhB(OH)₂ (0.55 mmol), 4-bromotoluene (0.5 mmol), Base (1 mmol), **F-GO-Pd** 5 mg containing 0.00035 mmol Pd, solvent (4 mL) at 70 °C .^{*b*} **F-GO-Pd** 1 mg, ^{*c*} **F-GO-Pd** 3 mg.

Suzuki-Miyaura reaction of aryl halides with different arylboronic acids.

Table S2 Suzuki-Miyaura reaction of aryl halides with different arylboronic acids

^{*a*} Reaction condition: $PhB(OH)_2$ (0.55 mmol), 4-bromotoluene (0.5 mmol), Base (1 mmol), **F-GO-Pd** 1 mg containing 0.00035 mmol Pd, solvent (4 mL) at 70 °C.

Supplementary Figures

Fig. S1 FT-IR spectra of GO, F-GO, F-GO-Pd.

Fig. S2 Photographs of different support catalyst dispersed in 50% alcohol aqoeous solution (a) F-Silica-Pd, (b) F-GO-Pd, (c) F-SiO₂-Pd.

Fig. S3 Curve of yield versus reaction time for different catalyst loading and hot filtration experiment.

Fig. S4 Pd 3d XPS spectra of different reaction time (a) 0 min, (b) 3 min, (c) 10 min, (d) 20 min.

Fig. S5 Raman spectra of F-GO-Pd during the reaction process.