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1 Rotation of the whole cation around its center-of-mass:

In the framework of the Sears approximation1,2, I(Q, t)R
s , the self (incoherent) intermediate scattering function of an isotropic rotation

over a sphere of radius b writes:

I(Q, t)R
s = j20(Qb)+

∞

∑
l=1

(2l +1) j2l (Qb)Fl(t) (S1)

The time-dependent term Fl(t) is the first order rotational auto-correlation function:

Fl(t) = 〈Pl(cosα(t))〉 (S2)

where α(t) is the angle between ~u(t), accounting for the particle orientation at time t = 0 and its orientation at time t later. Pl is the
Legendre polynomial of degree l. For times longer than few ps, F1(t) et F2(t) Eq.S2 simplifies by just considering two correlation times
3τ1 et τ1 :

I(Q, t)R
s = j0(Qb)2 +3 j1(Qb)2e−t/3τ1 +5 j2(Qb)2e−t/τ1 + · · · (S3)

The dynamics of bulk BMIM-TFSI has recently been investigated by Nuclear Magnetic Resonance Relaxation Dispersion (NMRD) and
PFG-NMR over a wide range of temperatures.3 At 298 K, Seyedlar et al. measure the room temperature rotational correlation times:
τBMIM

R = 400 ps.
To our knowledge, up-to-date, no molecular rotational correlation times have been reported for OMIM-BF4. In order to estimate the
contribution of the tumbling motion of the OMIM cation around the molecular center-of-mass, we rescale the BMIM-TFSI NMR derived
correlation time according to Stokes-Einstein-Debye’s law:

τ
OMIM
R =

ηOMIM−BF4

ηBMIM−T FSI

(
ROMIM

RBMIM

)3
τ

BMIM
R (S4)

Following Tokuda et al.4, the viscosities are ηBMIM−T FSI = 50 mPa.s, ηOMIM−T FSI = 92 mPa.s and the radius of the cations (equivalent
sphere matching the 3D structure of the cations as deduced from ab-initio calculations4) RBMIM = 3.3 Å and ROMIM = 3.73 Å. A rough
numerical estimate of the isotropic rotational correlation time of OMIM at T = 298 K is τOMIM

R = 1062 ps.

Even at the highest ToF QENS energy resolution used in this study (13 µeV ), the maximum correlation accessible time is of the order
of few hundred of ps. A correlation time of τR in the ns range is therefore not detectable. As shown on Fig.S1 this contribution is not
detectable in NSE neither. The total dynamical structure factor of OMIM then reduces to Eq.S6.
2 Derivation of the total dynamical structure factor:
As we have shown in the SI section 1 above that in the present study the molecular tumbling motion can be neglected, three contributions
describe the dynamics of the IL cation: side-chain motions, local diffusion within aggregates and long-range diffusion. As they occur
in different time windows, we suppose that they are independent. S (Q,ω)T

inc, the total dynamical structure factor, is therefore a
convolution of the dynamical structure factor Eq.4, 5 and 8 related to these individual modes:

S (Q,ω)T
inc = S (Q,ω)CF

inc ⊗S (Q,ω)loc
inc ⊗S (Q,ω)lr

inc (S5)

= IA (Q)Llr (Q,ω)+ IB (Q)Llr+Loc (Q,ω)

+ IC (Q)Llr+sc (Q,ω)

+ ID (Q)Llr+Loc+sc (Q,ω) (S6)
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Figure S1 OMIM long-range translational diffusion NSE contribution, I (Q, t)cation
lr (Eq.17) at Q = 1.07 Å−1 and 298 K. The dotted red line is the

estimated (see SI 1 section) contribution Eq.S3 of the isotropic rotation, with a radius b = ROMIM = 3.73 Å, of the OMIM molecule around its
center-of-mass with a correlation time τR = 1062 ps (Eq.S4). The full blue and red lines are respectively the total intermediate scattering function of
OMIM if the tumbling motion of the molecule is neglected or taken into account.

where Lx+y (Q,ω) is a Lorentzian line of HWHM Γx+y = Γx +Γy and

IA (Q) = pAloc (Q)Asc (Q)+(1− p)Aloc (Q) (S7)

IB (Q) = pAsc (Q)(1−Aloc (Q))

+(1− p)(1−Aloc (Q)) (S8)

IC (Q) = pAloc(Q)(1−Asc (Q)) (S9)

ID (Q) = p(1−Asc (Q))(1−Aloc (Q)) (S10)

The three dynamical contributions of equation S6 take place on different time ranges. The side-chain reorientational and dihedral
motions are faster than the local diffusion witch is itself expected to be faster than that the long range one so that Γsc � Γloc � Γlr.
Equation S6 can then be simplified:

S (Q,ω)cation
inc ≈ I1 (Q)Llr (Q,ω)+ I2 (Q)Lloc (Q,ω)+ I3 (Q)Lsc (Q,ω) (S11)

with:

I1 (Q) = pAloc (Q)Asc (Q)+(1− p)Aloc (Q) (S12)

I2 (Q) = pAsc (Q)(1−Aloc (Q))+(1− p)(1−Aloc (Q)) (S13)

I3 (Q) = p(1−Asc (Q)) (S14)

In conclusion the dynamical structure factor proposed by this model is composed by three Lorentzian relaxations whose each HWHM
are linked to a unique dynamical mode while the intensities are combination of the different EISF.

3 Implementation of the Gaussian model:
To determine Dloc, σloc and τ, Lloc(Q,ω) is fitted with the Gaussian model in the time domain.
The intermediate scattering function of the Gaussian model is:

I(Q, t)loc
inc = exp

(
−Q2

σ
2
loc

)(
1− exp

(
−Dloct

σ2
loc(1+2DlocQ2τ)

))
(S15)

and the intermediate scattering function corresponding to the diffusion within the aggregates is:

L(Q, t)loc
inc = exp

(
−t
τloc

)
(S16)
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where τloc = h̄/Γloc.
(1−Aloc(Q))L(Q, t)loc

inc is then fitted with I(Q, t)loc
inc −Aloc(Q) to obtain the Gaussian parameters Dloc, σloc and τ.

Figure S2 Selected QENS spectra (LET, ISIS, Chilton-Didcot, UK) of bulk OMIM-BF4 at 298 K as measured on LET at three energy resolutions 81, 22
and 13 µeV from top to bottom. The red thick line is the fit Eq.10 and the three dynamical contributions are shown: side-chains (Eq.4, thin red line),
local diffusion within an aggregate (Eq.5, green line) and long-range diffusion of the whole cation (Eq.8, blue line).
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Figure S3 Typical NSE spectrum of bulk OMIM-BF4 at 298 K (Q = 0.96 Å−1). The total fit according to Eq.4 is shown as the thick red line. The
individual dynamical contributions are shown with the same color code as in Fig.3B on an extended time range to highlight their short time behavior.

Figure S4 Line width (HWHM) of the QENS side-chains contribution Eq.3 fitted on the Tof data measured at the lower energy resolution (81 µeV ).
The fairly Q independence of Γsc indicates the reorientational nature of this contribution.

Figure S5 Gaussian fit of the low Q range of the EISF deduced from the fit of the ToF data at the three energy resolution shown on Fig.4. The full line
is the fit with a jump on three equivalent sites placed on a circle of radius r = 1.5 Å(Eq.15). The dotted line is the fit with a simple Guinier-like Gaussian
function of the form of Eq.7. The later fit leads to a characteristic distance of the cation side-chain motion < u2

sc > = 1.2 Å.
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Figure S6 (A) Same figure as Fig.6. The fits of the experimental data with a single exponential (full red line) and with a stretched exponential (dotted
line) are shown. (B) Same as (A) but on a log-log scale for a better clarity of the short time part of the curve.
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