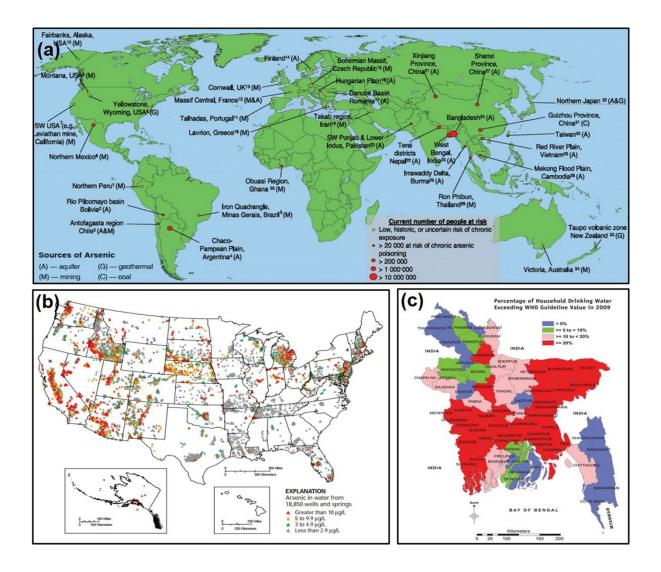
Supporting information.

One-pot synthesis of Ceria-Graphene Oxide composite for efficient removal of arsenic species


Tamil S Sakthivel^a, Soumen Das^a, Cameron J Prat^{b†}, and Sudipta Seal^{a,c*}

a. Advanced materials processing and analysis center (AMPAC), Nanoscience and Technology center (NSTC), Materials science and Engineering (MSE), University of Central Florida, Orlando, FL, 32826 (USA). E-mail: Sudipta.Seal@ucf.edu

b. Department of Chemistry, Hope College, Hope College, Holland, MI, 49423 (USA).

c. College of Medicine, University of Central Florida, Orlando, FL, 32827 (USA).

† REU student.

Figure S1. Images of arsenic contamination in ground water (a) globally, (b) the United States, and (c) Bangladesh [1-3].

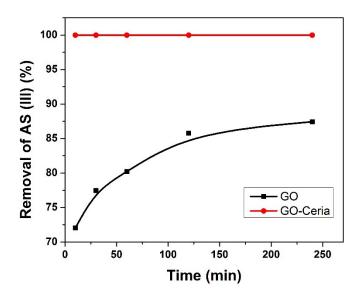


Figure S2. Kinetic adsorption results for graphene oxide vs GO-Ceria composite on As (III).

References:

1. A. H. W. Michael J. Focazio, Sharon A. Watkins, Dennis R. Helsel, and Marilee A. Horn, USGS, 2011.

- 2. U. FAO, WHO and WSP, UNICEF, 2010.
- 3. K. M. Karin Kemper, WSP Arsenic Publications 2005.