Supporting Information

Facile synthesis and shape evolution of well-defined phosphotungstic acid

potassium nanocrystals for highly efficient visible-light-driven photocatalyst

Xinran Li, Huaiguo Xue and Huan Pang*

College of Chemistry and Chemical Engineering Yangzhou University Yangzhou, Jiangsu 225002 (China) E-mail: huanpangchem@hotmail.com; <u>panghuan@yzu.edu.cn</u>

Figure S1. XRD patterns of as-prepared samples obtained from hydrothermal condition of 150 mg KCl and 300 mg phosphotungstic acid at 140 $^{\circ}$ C for 12 h.

Figure S2. SEM images of samples obtained from hydrothermal conditions: a) 80 mg KCl and 200 mg phosphotungstic acid at 140 $^{\circ}$ C for 12 h, b) 300 mg KCl and 500 mg phosphotungstic acid at 140 $^{\circ}$ C for 12 h, and c) As-prepared sample-S1.

Figure S3. SEM images of as-prepared samples obtained from hydrothermal condition of 150 mg KCl and 300 mg phosphotungstic acid at different temperatures for 12 h: a) 100 $^{\circ}$ C, b) 120 $^{\circ}$ C-S2, c) 140 $^{\circ}$ C-S1, d) 160 $^{\circ}$ C, and e) 200 $^{\circ}$ C.

Figure S4. SEM images of as-prepared samples obtained from hydrothermal condition of 150 mg KCl and 300 mg phosphotungstic acid at 100 $^{\circ}$ C for different times: a) 1 h-S3, b) 3 h, c) 6 h-S4, d) 9 h, e) 12 h, f) 15 h, g) 18 h, h) 21 h, and i) 24 h.

Figure S5. Samples (Denoted by **S4**) obtained from hydrothermal condition of 150 mg KCl and 300 mg phosphotungstic acid at 100 $^{\circ}$ C for 6 h: a, b) SEM images, and c, d) TEM images. Inset of d-SAED patterns.

Figure S6. XRD patterns of as-prepared samples, a) S1, b) S2, c) S3, and d) S4.

Figure S7. XPS spectra of the as-obtained products: a) S1, b) S2, c) S3, and d) S4.

Figure S8. Infrared spectra of as-prepared samples 1083 cm⁻¹ for v_{as} vibration of PO₄ (the central tetrahedral PO₄ bonds in the ions), 988 cm⁻¹ for the v_{as} vibration of W=O_t (terminal oxygen linked to a lone tungsten atom), 891 cm⁻¹ for v_{as} of W-O_b-W (O_b denotes the oxygen atom between two different W₃O₁₃ groups), and 800 cm⁻¹ for the v_{as} of W-O_a-W (O_a is the oxygen in the same W₃O₁₃), respectively. The peaks appearing at 594 and 527 cm⁻¹ are assigned to the vibration of δ (O-P-O) and v_s (W-O-W), respectively.¹

Figure S9. a) N_2 adsorption-desorption isotherms of as-prepared samples (S1, S2, S3

and S4), and b) the pore-size distribution curves.

Figure S10. a) UV-vis diffuse reflectance spectra of the as-prepared samples, b) Plots of $(Ahv)^2$ versus hv for the samples.

Figure S11. A plot of the photodegradation extent of RhB molecular on the bases of irradiation time for as-prepared samples and RhB (Without any H_2O_2 , other conditions are the same as Figure 5).

Figure S12. Catalyst-S1 recycle in repetitive degradation of RhB=2 × 10^{-5} M, H₂O₂=2 × 10^{-3} M; S1=0.5 g L⁻¹, pH=2.1.

Figure S13. ESR signals of the DMPO-•OOH/O₂•⁻ adducts for S1 (1 g L⁻¹)-H₂O₂ (2 × 10⁻² mol L⁻¹)-RhB (2 × 10⁻⁵ mol L⁻¹) with different visible light irradiation time: a) 100 s, and b) 300 s.

Photocatalyst	Efficiency / %	Degradation Time / h	Reference
Ag ₃ PO ₄ /TiO ₂	99	0.75	2
Fe ₃ O ₄ -SiO ₂ -TiO ₂ /GO	80	2.0	3
PZT coupled with TiO ₂	100	4.0	4
Cu ₂ ZnSnS ₄ -Pt	100	4.0	5
α -Fe ₂ O ₃ nanocrystals	100	3.0	6
α -Fe ₂ O ₃ hollow microplatelets	80	3.0	7
S1-K ₃ PW ₁₂ O ₄₀ ·nH ₂ O	100	1.5	This work

Table S1. Comparison of degradation efficiencies of different materials during the

RhB photodegradation driven by visible light reported in previous references.

References

- 1. N. Essayem, A. Holmqvist, P. Y. Gayraud, J. C. Vedrine and Y. Ben Taarit, *J. Catal.*, 2001, **197**, 273.
- 2. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song and Q. Xu, *J. Mater. Chem.*, 2012, **22**, 4050.
- F. Chen, F. Yan, Q. Chen, Y. Wang, L. Han, Z. Chen and S. Fang, *Dalton Trans.*, 2014, 43, 13537.
- 4. Q. Wu, D. Li, L. Wu, J. Wang, X. Fu and X. Wang, J. Mater. Chem., 2006, 16, 1116.
- 5. X. Yu, A. Shavel, X. Q. An, Z. Luo, M. Ibanez and A. Cabot, *J. Am. Chem. Soc.*, 2014, **136**, 9236.
- 6. X. Zhou, J. Lan, G. Liu, K. Deng, Y. Yang, G. Nie, J. Yu and L. Zhi, *Angew. Chem. Int. Ed.*, 2012, **124**, 182.
- 7. H. Liang, W. Chen, X. Jiang, X. Xu, B. Xu and Z. Wang, *J. Mater. Chem. A*, 2014, **2**, 4340.