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In search of a 2D CrN atomic structure, at the initial stage we determine an equilibrium 

geometry of the CrN unit cell with the space group symmetry Fm-3m by using DFT+U method with 

12 × 12 × 12 k-points mesh. The cell contained four Cr and four N atoms was chosen. The geometry 

optimization of bulk CrN demonstrates that the a translation vector equal to 4.227 Å which is in a 

good agreement with experimental data (a = 4.148 Å).1

The equilibrium geometries of MoSe2 and MoS2 unit cells of monolayers were calculated to 

study interaction of h-CrN with them. The k-point samplings of the first Brillouin zone (1BZ) have 

been chosen as 21 × 21 × 1 according to the Monkhorst–Pack scheme. The a translation vectors 

(3.294 Å and 3.165 Å for MoSe2 and MoS2 respectively) are in a good agreement with experimental 

data (aMoSe2 = 3.288 and aMoS2 = 3.15 Å)2,3 and theoretical predicted ones (3.29 Å and 3.13 Å 

respectively).4,5
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Figure S1. Phonon dispersion plot of the h-CrN sheet calculated using DFPT theory.

Figure S2. Equilibrium structure of the h-CrN nanocluster.



Figure S3. Equi-biaxial strain vs. energy (blue) and vs stress (red) plot for h-CrN. The strain 

energies as well as stress of both primitive and 3×3 cells are same. 

Figure S4. Isosurface (0.02 e/Å3) of spatial spin density distribution of h-CrN AFM state. The blue 

and green spheres correspond to the majority and minority spin density, respectively.



Figure S5. Band structures (spin-up and spin-down are black and pink) and densities of states. (a) 

Cr_[Se]–N_[Mo], (b) Cr_[Se]–N_[hex] and (c) Cr_[hex]–N_[Mo] configurations. DOSes of 

freestanding MoSe2 and h-CrN are presented in red and PDOSes of MoSe2 and h-CrN sheets are 

presented in blue.



Figure S6. Band structures (spin-up and spin-down are black and pink) and densities of states. (a) 

Cr_[S]–N_[Mo], (b) Cr_[S]–N_[hex] and (c) Cr_[hex]–N_[Mo] configurations. DOSes of 

freestanding MoSe2 and h-CrN are presented in red and PDOSes of MoS2 and h-CrN sheets are 

presented in blue.



Figure S7. Spatial charge distribution of h-CrN, h-CrN/MoSe2, h-CrN/MoS2 in appropriative energy 

regions.
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