Supplementary Information

Porous CuO Nanotubes/Graphene with Sandwich Architecture as High-performance Anodes for Lithium-ion Batteries

Shuning Xiao,^{ab} Donglai Pan,^a Liangjun Wang,^c Zhengzhong Zhang,^a Zhiyang Lyu,^b Wenhao Dong,^b Xiaolang Chen,^a Dieqing Zhang,^{*,a} Wei Chen^{*,abc} and Hexing Li ^{*,a}

a Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, International Joint Lab of Resource Chemistry SHNU-NUS-PU, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.

b Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.

c Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore.

E-mail: Dieqing Zhang, dqzhang@shnu.edu.cn; Hexing Li, Hexing-li@shnu.edu.cn; Wei Chen, phycw@nus.edu.sg.

Figure S1. Raman spectra of the graphene before and after annealing in air at 300 °C, as well as the spectra of Cu-Gr.

Figure S2. N₂ adsorption-desorption isotherms of graphene.

Figure S3. Materials optimization by controlling the mass ratio of graphene.

By increasing the amount of graphene from 0-8.4 wt%, the 2nd discharge capacity increases due to the well electron pathway created by graphene. Further increase from 8.4-20.5 wt% leads to the decrease of the capacity due to the reduced amount of CuO in the electrode since we are using the mass of CuO/graphene hybrids as the active materials for capacity calculation.

Figure S4. The 2nd cycle CV curves of pure graphene sample and CuO-Graphene hybrids at sweep rate of 0.5 mV/s in the potential window of 0.01-3.0 V vs. Li/Li⁺.

Figure S5. FESEM images of (a) CuO nanotubes and (b) CuO-CNT hybrid.

Figure S6. The 1st, 2nd and 10th cycle CV curves of CuO nanotubes and CuO-CNT hybrid.

Figure S7. The long-term cycling performance at a current density of 500 mA/g for CuO-Gr and pure graphene.

Figure S8. The long-term cycling performance at a current density of 500 mA/g for CuO-Gr and CuO nanoparticle/Graphene composite.

Figure S9. The SEM and high-resolution SEM images of CuO nanoparticle/Graphene composite.

Table S1. A survey of electrochemical properties of CuO-based and its hybrid composites in lithiu	ım
ion batteries.	

Anode materials	Potential windows	Specific capacity	Cycling stability	Reference
	(V vs. Li)	(mAh/g)		
CuO-graphene	0.01-3 V	550 mAh/g at 500 mA/g	~81 % after 250	this work
			cycles at 500 mA/g	
CuO-CNT	0.01-3 V	500 mAh/g at 67 mA/g	~100 % after 25	1
			cycles at 67 mA/g	
CuO-graphene	0.01-3 V	600 mAh/g at 65 mA/g	~100% after 100	2
			cycles at 65 mA/g	
CuO hollow	0.01-3 V	470 mAh/g at 100 mA/g	~87% after 100	3
octahedra			cycles at 100 mA/g	
CuO nanoplate	0.01-3 V	279.3 mAh/g at 670 mA/g	$\sim 80\%$ after 70	4
			cycles at 670 mA/g	
CuO nanofiber	0.005-3 V	426 mAh/g at 100 mA/g	~94% after 100	5
			cycles at 100 mA/g	
CuO 3D mesocrystal	0.01-3 V	525.2 mAh/g at 67 mA/g	~100% after 500	6
			cycles at 67 mA/g	
CuO-graphene	0.01-3 V	736.8 mAh/g at 67 mA/g	~94.7% after 50	7
			cycles at 67 mA/g	
CuO-RGO	0.01-3 V	657 mAh/g at 50 mA/g	~90% after 40	8
			cycles at 50mA/g	

Figure S10. Rate-performance comparison of CuO-based anodes in Li-ion battery.

Reference

- 1. Chem. Mater., 2008, 20, 3617-3622
- 2. J. Mater. Chem., 2010, 20, 10661-10664
- 3. J. Mater. Chem. A, 2013, 1, 11126-11129
- 4. Electrochim. Acta, 2016, 206, 217-225
- 5. J. Phys. Chem. C, 2012, 116, 18087-18092
- 6. J. Mater. Chem. A, 2016, 4, 8402-8411
- 7. ACS Appl. Mater. Interfaces, 2013, 5, 9850-9855
- 8. Nano Energy, 2013, 2, 1158-1163