Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Fabrication and electrolyte characterization of uniaxially aligned anion conductive polymer nanofibers

Tsukasa Watanabe, Manabu Tanaka, Hiroyoshi Kawakami Department of Applied Chemistry Tokyo Metropolitan University

- 1. Synthetic procedure of Q-PAES (Scheme S1).
- 2. ¹H-NMR spectra of PAES, CM-PAES, and Q-PAES (Fig. S1).
- 3. Relationship between the number of introduced chloromethyl groups and the reaction time (Fig. S2).
- 4. Large scale SEM images of Q-PAES aligned nanofibers (Fig.S3)
- Anion conductivity measurements of the Q-PAES membranes and nanofibers (Fig. S4).
- 6. SEM images of aligned nanofibers prepared by applying different voltages between aluminum plates ($V_2 = 1$ kV and 3 kV) (Fig. S5).

1. Synthetic procedure of Q-PAES

Scheme S1. Synthesis of Q-PAES.

2. ¹H-NMR spectra of PAES, CM-PAES, and Q-PAES

Fig. S1. ¹H-NMR spectra of PAES, CM-PAES (Number of introduced chloromethyl groups per repeating unit =0.82), and Q-PAES

3. Relationship between the number of introduced chloromethyl groups per repeating unit and the reaction time

Fig. S2. Number of introduced chloromethyl groups per repeating unit as a function of reaction time.

4. Large scale SEM images of Q-PAES aligned nanofibers.

Fig. S3. Large scale FE-SEM images of aligned nanofibers.

5. Anion conductivity measurements of the Q-PAES membranes and nanofibers

Fig. S4. Anion conductivity measurements of PAES membranes and nanofiber. This figure was described by modifying from a figure in our previous paper (H. Kawakami *et al., RSC Adv.,* **2014**, 4, 20005-20009.)

Uniaxially aligned nanofibers were prepared between aluminum electrode (width: 10mm, distance between electrodes: 5mm). The anion conductivities of Q-PAES membranes and nanofbers were measured by an electrochemical impedance spectroscopy. Intrinsic anion conductivity (σ) of the nanofbers were determined from the following equation; $\sigma = D/(R \cdot a \cdot N)$, where R, a, N, and d are impedance value, cross-sectional area of a single nanofber, numbers of uniaxially-aligned nanofbers between the electrodes, and distance between the electrodes, respectively, by reference to the anion conductivity measurement of conventional polymer electrolyte membranes ($\sigma = d$ /($R \cdot A$), where A is conducting area calculated from thickness and width of the membrane). The values of a and N were calculated by SEM observation.

6. SEM images and average fiber diameters of aligned nanofibers prepared by applying different voltage between aluminum plates ($V_2 = 1$ kV and 3 kV)

Fig. S5. FE-SEM images of aligned nanofibers prepared by applying different V_2 (1 kV and 3 kV). Each average fiber diameter was estimated by measuring the diameters of multiple nanofibers (n = 25) in various SEM images.