Supplementary Information for

Topological insulating states in 2D transition metal dichalcogenides induced by defects and strain

Xiaoyin Li,
a, b, c Shunhong Zhang, a and Qian Wang
* $^{a,\,b,\,c}$

^a Center for Applied Physics and Technology, College of Engineering, Peking University; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Beijing 100871, China.

^b Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.

^c Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China.

Contents

Supplementary Figures

- Figure S1. Optimized structures of 2D MoS₂ polymorphs.
- Figure S2. NpT-AIMD simulation results of sho-MoS₂.
- **Figure S3.** MLWFs of sho-MoS₂.
- Figure S4. Band structure evolution of sho-MoS₂ under equi-biaxial tensile strain.
- Figure S5. Orbital projected band structure of sho-MoS₂ under equi-biaxial tensile strain.
- Figure S6. Band structure of sho-TMD, and band gap of sho-MoSe₂ and sho-WS₂ under strain.
- Figure S7. Band structure evolution of sho-MoSe₂ and sho-WS₂ under equi-biaxial tensile strain.
- **Figure S8.** Optimized structures of $sh^n o MoS_2$ (n = 2-6).
- **Figure S9.** Electronic band structure of $sh^n o$ -MoS₂ (n = 1-6).
- **Figure S10.** Density of states of $sh^n o MoS_2$ (n = 1-6).
- **Figure S11.** Band-decomposed charge density of sh^n o-MoS₂ (n = 1-5).

Supplementary Tables

- **Table S1.** Structural parameters and band gap of sho-TMD.
- **Table S2.** Structural parameters, total energy, and band gap of sh^n o-MoS₂ (n = 1-6).

Figure S1. Optimized structures of (a) $H-MoS_2$, (b) $1T-MoS_2$, (c) $H'-MoS_2$, (d) $1T'-MoS_2$, (e) $T''-MoS_2$ and (f) so- MoS_2 .

Figure S2. (a) Evolution of lattice parameters a, b, and γ of sho-MoS₂ during the NpT-AIMD simulation at temperature of 300 K. (b) Snapshots of the structure (2×3 supercell) at the end of the simulation.

Figure S3. Maximally Localized Wannier functions (MLWFs) of sho-MoS₂, including three S-3p orbitals and five Mo-4d orbitals.

Figure S4. Electronic band structure of $sho-MoS_2$ under different magnitudes of equibiaxial tensile strain at the PBE level.

Figure S5. Orbital projected band structure of sho-MoS₂ under different magnitudes of equi-biaxial tensile strains.

Figure S6. Electronic band structure of (a) sho-MoSe₂, (b) sho-MoTe₂, (c) sho-WS₂, (d) sho-WSe₂, and (e) sho-WTe₂ calculated using the PBE functional. (f) Energy band

gap as a function of equi-biaxial tensile strain for sho-MoSe₂ and sho-WS₂, respectively.

Figure S7. Electronic band structure of (a) $sho-MoSe_2$ and (b) $sho-WS_2$ under different magnitudes of equi-biaxial tensile strain (at the PBE level).

sho-MX ₂	<i>a</i> (Å)	<i>b</i> (Å)	$E_g (eV)$
MoS ₂	9.98	5.70	0.35
MoSe ₂	10.41	5.92	0.10
MoTe ₂	11.12	6.18	metallic
WS_2	10.02	5.73	0.20
WSe ₂	10.42	5.92	metallic
WTe ₂	11.08	6.18	metallic

Table S1. Optimized lattice parameters and electronic band gaps E_g at the PBE level for sho- MX_2 structures, where M = Mo and W, and X = S, Se and Te.

Figure S8. Optimized structures of (a) sh^2o-MoS_2 , (b) sh^3o-MoS_2 , (c) sh^4o-MoS_2 , (d) sh^5o-MoS_2 , and (e) sh^6o-MoS_2 from the top and side views.

Figure S9. Electronic band structure of (a) sho-MoS₂, (b) sh²o-MoS₂, (c) sh³o-MoS₂, (d) sh⁴o-MoS₂, (e) sh⁵o-MoS₂, and (f) sh⁶o-MoS₂ at the PBE level.

From the results in Table S2, one can see that the band gaps of sh^n o-MoS₂ structures increase as the value of *n* increases except for the case of *n* = 1. This can be attributed to the structure uniqueness of sho-MoS₂. It is found that the charge is mainly distributed in the octagon rings by calculating band-decomposed charge density corresponding to the two lowest unoccupied bands of sh^n o-MoS₂. For sh^n o-MoS₂ with *n* value larger than 1, where the neighboring octagons are separated by hexagons along the crystal axis *a*, so that suppressing the interaction of localized charge in two neighboring octagons. However, for sho-structure, there is no hexagon unit between the neighboring octagonal rings along the crystal axis *a*, thus the charge localized in the neighboring octagons can directly interact with each other, resulting in the abnormal value of band gap.

Table S2. Optimized lattice parameters, relative energy (*E*) calculated with respect to H-MoS₂, and band gap (E_g , calculated by using the PBE functional) for sh^{*n*}o-MoS₂ (*n*=1-6).

<i>n</i> in sh ^{<i>n</i>} o-MoS ₂	<i>a</i> (Å)	<i>b</i> (Å)	E (eV/f.u.)	E_g (eV)
1	9.98	5.70	0.60	0.35
2	16.40	5.60	0.37	0.29
3	22.80	5.56	0.27	0.43
4	29.18	5.55	0.21	0.56
5	35.54	5.54	0.17	0.55
6	41.91	5.54	0.15	0.55

Figure S10. Electronic density of states (DOS) of sho-, sh²o-, sh³o-, sh⁴o-, sh⁵o-, and sh⁶o-MoS₂. Here a.u. represents arbitrary unit.

Figure S11. Band-decomposed charge density isosurfaces (isovalue: 0.01 e/Å^3) corresponding to the lowest and the second lowest unoccupied energy bands of sh^n o-MoS₂: (a₁) and (a₂) for sho-MoS₂; (b₁) and (b₂) for sh^2 o-MoS₂; (c₁) and (c₂) for sh^3 o-MoS₂; (d₁) and (d₂) for sh^4 o-MoS₂; (e₁) and (e₂) for sh^5 o-MoS₂. The top and bottom panels are the charge of the lowest and second lowest unoccupied bands, respectively.