
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Dual-stimuli responsive injectable microgel/solid drug nanoparticle nanocomposites for release of poorly soluble drugs

Adam R. Town,^a Marco Giardiello,^a Rohan Gurjar,^b Marco Siccardi,^b Michael. E. Briggs,^c Riaz Akhtar,^d Tom O. McDonald*^a

^dSchool of Engineering, University of Liverpool, George Holt Building, Brownlow Hill, Liverpool, L69 3GH, UK

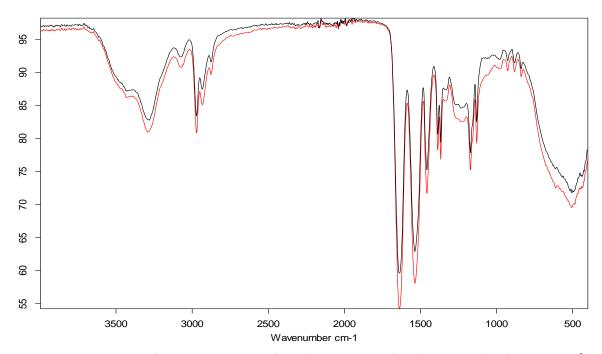
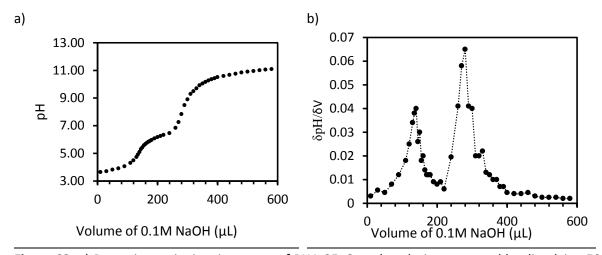
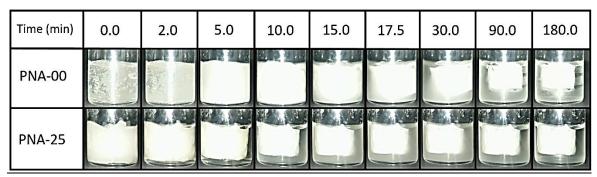
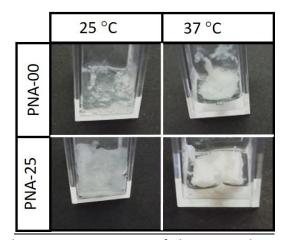


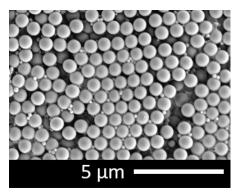
Figure S1. ¹H NMR Spectra of microgels a) comparison of PNA-00 (black) and PNA-25 (red). Peak at 2.81 ppm indicates presence of AIA comonomer due to NH₂ protons. b) identification of PNIPAm peaks.

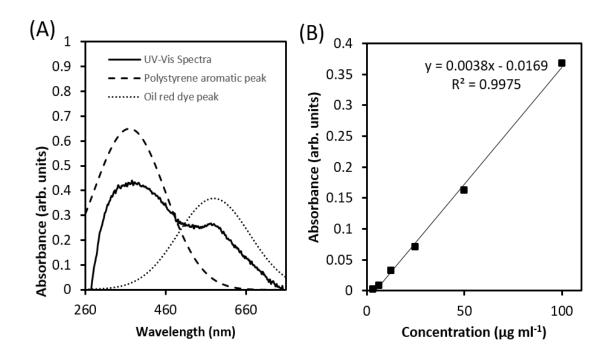

^aDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK. E-mail: tomm@liv.ac.uk; Tel: +44 (0)151 795 0524

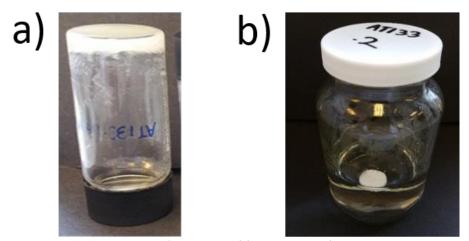
^bDepartment of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool, L69 3GF, UK


^cCentre for Materials Discovery, University of Liverpool, Crown Street, Liverpool, L69 7ZD


Figure S2. FTIR Spectra of microgels. PNA-00 (black) and PNA-25 (red). 910-665 (s, b) N-H wag 1°, 2° amines, 3400-3250 (m) N-H stretch 1°, 2° amines, amides, 1650-1580 (m) N-H bend 1° amines, 1250-1020 (m) C-N stretch aliphatic amine.


Figure S3. a) Potentiometric titration curve of PNA-25. Sample solution prepared by dissolving 50 mg of lyophilized microgel into 50 mL of distilled water, followed by lowering sample pH to <pH4 with HCl. Sample titrated with 0.1M NaOH at 25 °C +/- 0.5 °C under a nitrogen atmosphere. b) Differential of titration curve, difference between two equivalence points used to calculate AlA content in microgel.


Figure S4. Images of microgel aggregate formation from swollen gel over time. The swollen gel was formed in PBS and placed in an incubator at 37 °C


Figure S5. Images of dual-responsive transition of the microgels in HBSS; from swollen self-supporting gels to bulk aggregates. Microgel samples as swollen gel (left) and bulk aggregate (right). PNA-00, 14.90% (w/w), (top) and PNA-25, 6.24% (w/w), (bottom).

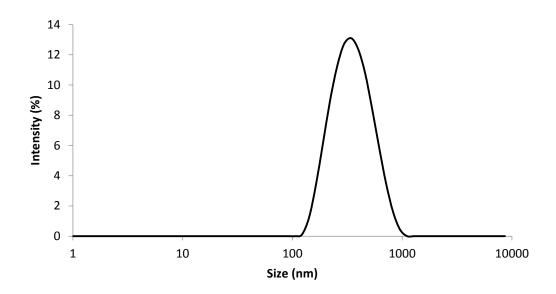

Figure S6. SEM image of Polystyrene Particles. Sample diluted to 0.01 mg mL⁻¹ in distilled water. Sputter coated with gold (EMITECH K550X) with a deposition current of 25 mA for 100 seconds before imaging. SEM images were then obtained using a Hitachi S-4800 FE-SEM at 3 kV.


Figure S7. (A) UV-vis absorbance spectrum of oil red dyed polystyrene nanoparticles, deconvoluted into two component peaks using Gaussian amplitude peak fitting with a Gaussian response width of 2 standard deviations. (B) UV-Vis calibration data using absorbance of deconvoluted oil red dye peak, linear relationship between absorbance and concentration from 0-1000 $\mu g \, mL^{-1}$.

Figure S9. Lopinavir release experiment a) example of formulation of microgel and lopinavir solid drug nanoparticles at room temperature b) formulation in shrunken disk form after heating to 37 °C and transferring to 100 mL of release medium (PBS).

Figure S8. DLS analysis of lopinavir solid drug nanoparticles. Size distribution by intensity at 25 $^{\circ}$ C. Z-average diameter = 330 nm, PdI = 0.18.

Figure S10. (left) Lopinavir drug particulates and (right) Lopinavir SDN's. Both dispersed in water at 1mg ml⁻¹.

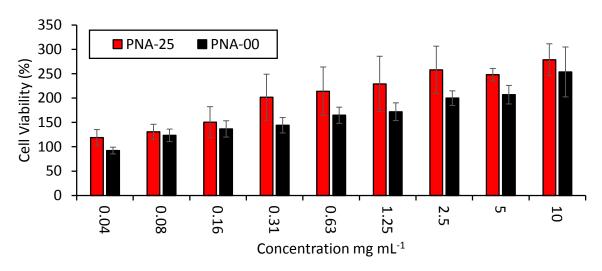


Figure S11. Cytotoxicity of microgels towards cells in MTP Assay.