Atomic Layer Deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries

Songtao Lu,^{a,+} Huanhuan Wang,^{a,+} Jia Zhou,^a Xiaohong Wu,^a* Wei Qin^b*

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China. *E-mail: wu-xiaohong@hit.edu.cn

^b School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China. *E-mail: qinwei@hit.edu.cn

Table S1. Electrochemical properties of ZnO prepared by various methods from literatures.

Electrode	Prepare method	Voltage rang[V]/ Current rate	Initial C _{dis} /C _{cha} [mAh g ⁻¹]	Discharge capacity[mAh g ⁻¹]/ cycles	ZnO content
ZnO-Loaded/porous carbon (PC) ¹	Solvothermal	0.1-3.0/100 mA g ⁻¹	2107.4/1062.9	653.7/100th	54%
Graphite-coated ZnO ²	Hydrothermal	0.1-3.0/1000 mA g ⁻¹	1470/968	600/100th	—
ZnO/graphene nanocomposite ³	High energy ball milling	0.01-2.5/100 mA g ⁻¹	783/—	610/500th	88.8%
ZnO@CF ⁴	Hydrothermal	$0.01-2.5/100 \text{ mA g}^{-1}$	—/—	850/200th	81.4%
Yolk-shell ZnO-C microspheres ⁵	Chemical solu- tion reaction	0.01-3.0/100 mA g ⁻¹	1432/798	520/150th	_
ZnO/MWCNT ⁶	Sol-gel	$0.2-2.5/200 \text{ mA g}^{-1}$	1152/—	460/100th	10%
ZnO/Graphene ⁷	Sol-gel	0.005 - $3.0/200 \text{ mA g}^{-1}$	1583/—	516/100th	74.5%
porous carbon-coated ZnO QDs ⁸	pyrolysis of IRMOF-1	0.02 - $3.0/75 \text{ mA g}^{-1}$	~2300/—	1150/10th	68%
Ag-C@ZnO-C@Ag-C ⁹	Electrostatic	0.01 - $3.0/200 \text{ mA g}^{-1}$	2396/1596	1670/200th	72.5%
ZnO QD/graphene ¹⁰	ALD	$0.1-3.0/100 \text{ mA g}^{-1}$	2000/-	~540/100th	42.7%
ZnO nanograins/ graphene/Al ₂ O ₃ ¹¹	ALD	0.1-3.0/100 mA g ⁻¹	1513/803	490/100th	53%
ZnO-CB	ALD	$0.01-3.0/100 \text{ mA g}^{-1}$	2096/1441	1026/500th	77.04%

Fig. S1 (a) Low-magnification TEM image, (b, c) high resolution TEM images of ZnO-CB nanocomposite after 500 charge-discharge cycles at a current rate of 100 mA g^{-1} .

References

- 1 X. Shen, D. Mu, S. Chen, B. Wu and F. Wu, ACS Appl Mater Interfaces, 2013, 5, 3118-3125.
- 2 E. Quartarone, V. Dall'Asta, A. Resmini, C. Tealdi, I. G. Tredici, U. A. Tamburini and P. Mustarelli, *J. Power. Sources.*, 2016, **320**, 314-321.
- 3 M. Yu, D. Shao, F. Lu, X. Sun, H. Sun, T. Hu, G. Wang, S. Sawyer, H. Qiu and J. Lian, Electrochem. Commun., 2013, **34**, 312-315.
- 4 C. Xiao, S. Zhang, S. Wang, Y. Xing, R. Lin, X. Wei and W. Wang, *Electrochim. Acta.*, 2016, **189**, 245-251.
- 5 Q. Xie, X. Zhang, X. Wu, H. Wu, X. Liu, G. Yue, Y. Yang and D. L. Peng, *Electrochim. Acta.*, 2014, **125**, 659-665.
- 6 H. Köse, S. Karaal, A. O. Aydın and H. Akbulut, J. Power Sources., 2015, 295, 235-245.
- 7 H. Li, Y. Wei, Y. Zhang, C. Zhang, G. Wang, Y. Zhao, F. Yin and Z. Bakenov, *Ceram. Int.*, 2016, 42, 12371-12377.
- 8 S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J. H. Kang, S. Wi, B. Park and C. R. Park, *J Am Chem Soc*, 2013, **135**, 7394-7397.
- 9 Q. Xie, Y. Ma, X. Wang, D. Zeng, L. Wang, L. Mai and D. L. Peng, *ACS Nano*, 2016, **10**,1283-1291.
- 10 X. Sun, M. Xie, H. T. Sun, T. Hu, F. Y. Lu, S. M. Scott, S. M. Georgec and J. Lian, *J. Mater. Chem. A*, 2014, **2**, 7319-7326.
- 11 M. P. Yu, Y. S. Wang, C. Li and G. Q. Shi, *Nanoscale*, 2014, 6, 11419-11424.