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1. Sampling

The randomness of the sampling procedure safeguards the unbiasedness of the estimation, hence, great care 
must be giving to this step. The random selection of the sampled particles from the entire population are given 
by a slightly adapted version of a systematic uniform random sampling (SURS) procedure. In short, an 
automated SURS procedure is used: tilt series are recorded if:

- A particle is in the field of view
- A particle is partially in the field of view, but touching the upper part or right part of the field of view

In these two cases, the field of view was manually adjusted to bring the particle in the center of the field of 
view. Particles were not selected if:

- They were partially in the field of view, but touching the left part or bottom part of the field of view.
- If more than one particle was in the field of view, then the most near the center was chosen (least 

manual movement)
- Nearby gridbars cast shadows thereby limiting the tilt angle range resulting in poor tomographic 

reconstruction. Positions not allowing a 120° tilt range were excluded.
When the field of view was empty, no tilt series was recorded.
Practically, the SURS was carried out by a software (SerialEM) script:

// Distance 20 means that the stage shift between adjacent images will be 20 micrometer
Distance = 20
// Steps 5 means a grid of 4 x 4 (or 16 positions)
Steps = 4
// Information of where to save the data
SetDirectory D:\Data\Tomography Batch
SetNewFileType 1
OpenNewFile TomographyTilts.mrc

//Initialization, including homing of the holder to the goniometer 0,0 position (thereby steeing the first random 
position)
Xsteps = $Steps
Ysteps = $Steps
Yback = 0
Counter = 0
Xstart = $Xsteps - 1 
Xstart = $Xstart / 2 
Xstart = -1 * $Xstart  * $Distance 
Ystart = $Ysteps - 1 
Ystart = $Ystart / 2
Ystart = -1 * $Ystart  * $Distance 
MoveStageTo 0 0 
MoveStage $Xstart $Ystart   
Totalimage = $Steps * $Steps
Echo Starting

// Meandering through the 4 x 4 positional grid in a systematic and uniform procedure
Loop $Ysteps
    Loop $Xsteps
        G 1
        NormalizeLenses 7
        P
        S A 
        Counter = $Counter + 1
        Echo $Counter of $Totalimage
        MoveStage $Distance 0
    EndLoop
    Xback = $Xsteps * $Distance * -1
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    Yback = $Yback + $Distance 
    MoveStage $Xback $Distance 
EndLoop

CloseFile
MoveStageTo 0 0 
Echo finished

The initial randomness is provided because:
- The deposition of particles during sample preparation process (drying) is random and beyond the 

control of the user; 
- The grid rotation in the sample holder is random;
- The 0,0 position of the stage is not necessarily the center of the grid. The sample holder has a diameter 

depression of 3.5 mm into which the 3.05 mm grid loosely fits. This variation, 450 μm, is about 10 000 
times the size of the objects under study. 

Therefore, we can probably make the assumption that all particles have the same chance to be sampled.

2. Nanostars morphology

Figure SI-1. Orthogonal XY tomographic planes (thickness: 0.307 nm) through the first 9 Au 
nanostars. The dark signal of the particles is the effect of the strong electron scattering of Au. The 
enveloping polymer shell surrounding the particles is carbon-based and scatters much less strongly. The 5 
nm round, dark particles inside the envelope are trapped fiducial markers (spherical Au nanoparticles) 
The bright artifacts, usually in the equatorial region of the particles are the effect of the under-sampling, 
originating in the technical impossibility to tilt over a 180° range.

Figure SI-2. 3D rendering (by manually tracing) of an Au nanostar (left, yellow) and together with its 
surrounding PVP shell (right in red).



Video SI-1

Video SI-1. The video shows the virtually browsing through the orthogonal XY tomographic slices 
(thickness: 0.307nm) of the first 9 Au nanostars.

Video SI-2

Video SI-2. Video of the raw tomographic data of the first 9 Au nanostars: the tilting series between 
tilt angles -60° and +60° at 2° increment. The reconstructed tomograms are shown in Video SI-1.

3. Holmes effect

The Holmes effect is an overprojection issue resulting in bias introduced if the slices are too thick: objects are 
seen as larger in projection since variations within the slice along the axial axis (the Z axis) are not considered, 
causing and their size to be overestimated. Estimators such as the Cavalieri volume estimator multiply the result 
of the probe count with the slice thickness and are therefore prone to the Holmes effect. 

The projection of a perfect sphere will yield a circle in all orthogonal projections. However, the resolution along 
the axial dimension is a function of the slice thickness. Contained within one slice will project such object as a 
circle  onto the XY plane, making it indiscernible from a cylinder. Hence, the volume will be overestimated by 
27%. If the sphere is cut into 5 slices, the Holmes effect will be minimized since the upper and lower slices (the 
polar regions) will report lower areas. For a sphere cut into 5 equally-thick slices (1/5 or the dimeter), an 
overestimation of 16% can be contributed to the Holmes effect. Increasingly thinner slices will diminish the 
Holmes effect, until a theoretical infinitely thin slice thickness will eliminate the effect.

Figure SI-3. The Holmes effect. The estimate of the volume of a perfect sphere (radius = 10) is 
overestimated as a function of the axial resolution (the slice thickness). The schemes show the object in 
the axial plane (orthogonal side view, top), the projection of the top plane (second row), a 3D rendering of 
the modelled object (third row) and the estimated volume (bottom row). The mathematical computation 
is shown in the left column. A one-slice approach (second from left column) transforms the object 
essentially into a cylinder resulting in a large Holmes effect. Thinner slices (two rightmost columns) 



model the sphere as a stack of thinner cylinders. The thinner the cylinder, the better it will resemble the 
mathematical sphere and the lower the volume overestimation. 

Entirely overcoming the Holmes effect can be challenging but reducing it is not impossible. Subtracting the 
largest projected area was suggested (Gundersen, 1986) to remove most of the bias. Another possibility is to 
oversample along the z-axis, i.e. producing thinner planes and using not using every plane in the stereological 
analysis. It could be shown that using only every kth section reduces the total Holmes effect by a factor k. The 
high resolution of the TEM provides a very small axial pixel size in the tomographic dataset (0.305 nm for the 
nanostars datasets). This is positive for two reasons: (1) it highly reduces the Holmes effect and (2) it allows a 
high k factors (practically, a k value of 15 was used for the nanostars, 12 for the aggregates), greatly increasing 
the efficiency of the analysis.

However, the concept of pixel size must not be confused with resolution. Axial resolution is a very tricky 
concept in tomography, which explain the general use of pixel size as surrogate. Conventionally, the resolution 
is calculated using the Crowther criterion(RA et al., 1970):

𝑚 =  
𝜋 ∙ 𝐷

𝑑
Where m is the number of views, D is the size of the object (the diameter) and d is the resolution. For an 
approximately 40 nm particle, recorded with 61 views follows that d  2.06 nm. In fact, the distance u (see ≈
below) was chosen to be larger than the axial resolution in order to avoid issues with resolving structures 
between planes.

4. Example the procedure with one nanostars, including calculation of 
the coefficient of error for the Cavalieri probe.

The 3D tomographic dataset is a set of parallel section planes with a constant separation t. The set of section 
planes is randomly positioned on the object, i.e. the first section to hit the object is random within an interval of 
length t. Note that since the set of sections must have a random position on the object, the number of planes of 
thickness t containing something of the object is a random variable and not the same for each orthogonal 
dimension. 

By convention, the orientation of the planes in the 3D tomographic dataset when opened are known as the 
XY plane. The following script was then applied to each dataset. The output is single stack containing the object 
sliced in XY, XZ and YZ plane, reduced along the z-axis with a resolution (4.6 nm) matching the distances 
between crosses (4.6 nm, area per cross = 4.62 nm = 20.2 nm2) and the distance between lines (4.6 nm). The 
one-stack option allows to analyze the three orthogonal dimensions most efficiently, ie. Without open and 
closing data and therefore without the need to take the attention away from the data. The green crosses and 
magenta lines overlay allow to perform both a fakir probe and Cavalieri point count with the same dataset. The 
script was written in ImageJ and is understood as IJ1 macro. It assumes the tomogram is open.

// open data
rename("XYplane");

// Duplicate into 3 orthogonal planes: XY, XZ and YZ; 
//==================================================
// XY to XZ plane
run("Duplicate...", "title=XZplane duplicate");
selectWindow("XZplane");
run("Reslice [/]...", "output=0.307 start=Left avoid");
selectWindow("XZplane");
close();
selectWindow("Reslice of XZplane");
rename("XZplane");

// XY to YZ plane
selectWindow("XYplane");
run("Duplicate...", "title=YZplane duplicate");
selectWindow("YZplane");
run("Reslice [/]...", "output=0.307 start=Top avoid");
selectWindow("YZplane");
close();
selectWindow("Reslice of YZplane");
rename("YZplane");



// Concatenate the three stacks into one z-stack 
run("Concatenate...", "  title=[Concatenated Stacks] image1=XYplane image2=XZplane 

image3=YZplane image4=[-- None --]");

//Reduce the Z resolution (k factor = 15) and assure the XY resolution is correct
selectWindow("Concatenated Stacks");
run("Reduce...", "reduction=15");
run("Set Scale...", "distance=3.2573 known=1 pixel=1 unit=nm");

// Place colored overlays
run("Grid...", "grid=Crosses area=21.2 color=Green");
run("Flatten", "stack");
run("Grid...", "grid=[Horizontal Lines] area=21.20 color=Magenta");
run("Flatten", "stack");

The resulting stack can be immediately interpreted according to the following convention. Incidents of the 
magenta lines (the fakir probe) crossing the object are counted as line intercepts and events of a cross (produced 
by the short green vertical line and the magenta line) on the object are count as (Cavalieri) points. In the zoom-
in depicted below, most events are straightforward to interpret, with the exception of incidents involving the 
round small object on the left and the line crossing second from bottom on the right (open cyan arrowhead). The 
small round object of the first case is a fiducial marker and is not part of the object. Hence, the interpretation is 
to disregard these events (two line interceps, one cross point). The corss of the second case may be interpreted 
as edge-on. In such a case, the operator must faithfully interpret the situation. Here, it was decided that the cross 
was inside the object and therefore it was counted. In situations where one pixel may decide, and thus exceeding 
the precision of the cross, which is hiding the pixel underneath, the pixel in the upper left corner of the cross was 
used. the results of this selection are 10 line intercepts (yellow open arrows) and 13 point counts (cyan 
arrowheads). 

Figure SI-4. Line counting and point counting on a zoomed-in part of a plane.

The sweeping tangent method comprises the visual inspection of the plane and detecting the number of 
occations of convex and concave curves with respect to the horizon. In the example below, the red lines denote 
where the object is curves outward (i.e. convex) and the green lines denote hollowed out, convex incidents (with 
the horizon as reference).



Figure SI-5. Tangent sweep probe of a plane.

These three probes are applied to each 15th slide (the k factor) of the object:



Figure SI-6. Line counting, point counting and tangent sweep counting on an entire object. In the XY 
plane, a total of 376 line interceps and 492 cross pints were registered. The sweeping tangent yielded 83 
convex and 29 concave events. 

The procedures are repeated for the XZ plane:



Figure SI-7. Line counting, point counting and tangent sweep counting on an entire object. The XZ plane 
yielded a total line intercept count of 302, whereas the crosses count was 524. The sweeping tangent count 
yielded 73 convex and 20 concave events.

A final repetition in the YZ plane is performed. The YZ planes are the ones suffering the most from the missing 
wedge effect, which renders them most prone to interpreter bias.



Figure SI-8. Line counting, point counting and tangent sweep counting on an entire object. On the YZ 
plane a total line intercept count of 320, whereas the crosses count was 505. 76 convex and 19 concave 
incidents were counted. 

The above three panels (SI-6, SI-7 and SI-8) are availble at a high resolution for closer inspection. All the counts 
are summarized in the table below.

Line intercepts Cross points Sweeping tangent (convex / 
concave)

Plane XY XZ YZ XY XZ YZ XY XZ YZ



1 18 22 2 31 19 2 3 / 1 2 / 0 2 / 0
2 38 38 6 42 46 3 6 / 0 6 / 0 2 / 0
3 46 38 8 59 75 6 9 / 3 8 / 0 2 / 0
4 52 30 14 75 67 9 8 / 2 6 / 3 4 / 0
5 42 34 20 77 59 16 6 / 4 5 / 1 14 0
6 34 24 32 80 64 45 7 / 5 5 / 3 10 / 3
7 38 20 28 71 64 50 6 / 4 6 / 4 4 / 2
8 28 30 38 46 43 62 7 / 5 7 / 5 6 / 2
9 22 28 32 35 47 70 9 / 5 4 / 0 6 / 4
10 20 20 36 26 21 69 6 / 0  5 / 2 7 / 3
11 16 12 30 17 11 70 6 / 0 9 / 2 6 / 4
12 14 4 42 10 6 75 6 / 0  4 / 0 7 / 1
13 8 2 32 3 2 28 4 / 0  2 / 0 6 / 0
14 2 18 1 17  2 / 0 4 / 0
15 14 12 2 / 0
16 6 5 2 / 0
17 4 2 2 / 0
Total 376 302 320 572 524 505 83 / 29 69 / 20 76 / 19

Table SI-1. Summary of the counts (Line intersect, Cavalieri counts, Tangent sweep) on one entire 
object. 

Surface estimation
 

The unbiased surface area estimation is based on the random intersection of the geometrical fakir probe (the 
horizontal magenta lines), which is an isotropic set of parallel lines with a spacing of u=4.6 nm through the 3D 
object. The parallel lines transect the object. The surface area is then given by

𝐸𝑠𝑡(𝑆) =
2
𝑑

∙ 𝑢2 ∙
𝑛

∑
1

(𝐼𝑥𝑦 + 𝐼𝑥𝑧 + 𝐼𝑦𝑧)

Where  the number of dimensions (=3),  the length between two parallel test lines (=4.6 nm) and ,  𝑑 𝑢 𝐼𝑥𝑦 𝐼𝑥𝑧

and  the total number of intersections between the object and the fakir probe over the  planes. The surface of 𝐼𝑦𝑧 𝑛
the example can therefore be estimated by: 

𝐸𝑠𝑡(𝑆) =
2
3

∙ 4.62 ∙
17

∑
1

(376 + 302 + 320) = 14 109 𝑛𝑚2

Volume estimation

For unbiased volume estimation the Cavalieri probe is required: points (generated by the intersection of the 
magenta fakir probe lines with vertical short green lines at the same spacing u fall on the object of interest and 
are counted. This total sum of these counts relates to the volume of the object according to:

𝐸𝑠𝑡(𝑉) =
1
𝑑

∙
𝑛

∑
1

𝑃𝑖 ∙ 𝐴𝑝 ∙ 𝑢

Where  the total number of points falling on the particle in plane ,  is the total number of planes (17),  𝑃𝑖 𝑖 𝑛 𝑢

is the thickness of the planes (4.6 nm), and is the associated area per point (  21.2 nm2). This yields for 𝐴𝑝 𝑢2 =
the example above:

𝐸𝑠𝑡(𝑉) =
1
3

∙
17

∑
1

(572 + 524 + 505) ∙ 20.2 ∙ 4.6 = 49 587 𝑛𝑚3

The precision of the estimate, expressed by the coefficient of error (CE), is quite challenging: variance 
estimators such as coefficient of error are only valid for n independent observations. However, a strong  
dependence between areas of systematic sections exists, even from very irregularly shaped objects: if a 



particular section in the systematic series happens to be relatively large then very likely the previous and the 
following sections will also be large.
We used the solution proposed by Gundersen and Jensen. (Gundersen and Jensen, 1987) In short: 3 factors A, B 
and C are calculated for each plane, taking into account the changes in subsequent planes. A is the number of 

points counted squared ( . B is the number of points multiplied with the number of points on the next plane (𝑃𝑖)
2

( and C is the number of points multiplied with the number of points of the plane after that ((𝑃𝑖 ∙  𝑃𝑖 + 1) 
𝑃𝑖 ∙  𝑃𝑖 + 2).

Counts A B C A B C A B C
Plane XY XZ YZ
1 31 961 1302 1829 19 361 874 1425 2 4 6 12
2 42 1764 2478 3150 46 2116 3450 3082 3 9 18 27
3 59 3481 4425 4543 75 5625 5025 4425 6 36 54 96
4 75 5625 5775 6000 67 4489 3953 4288 9 81 144 405
5 77 5929 6160 5467 59 3481 3776 3776 16 256 720 800
6 80 6400 5680 3680 64 4096 4096 2752 45 2025 2250 2790
7 71 5041 3266 2485 64 4096 2752 3008 50 2500 3100 3500
8 46 2116 1610 1196 43 1849 2021 903 62 3844 4340 4278
9 35 1225 910 595 47 2209 987 517 70 4900 4830 4900
10 26 676 442 260 21 441 231 126 69 4761 4830 5175
11 17 289 170 51 11 121 66 22 70 4900 5250 1960
12 10 100 30 0 6 36 12 6 75 5625 2100 1275
13 3 9 0 0 2 4 2 0 28 784 476 336
14 1 1 0 0 17 289 204 85
15 12 144 60 24
16 5 25 10 0
17 2 4 0 0
Total 572 33616 32248 29256 524 28925 27245 24330 505 30187 28392 25663

Table SI-2. Calculation of the factors required in the calculation of the coefficient of error. 

These three factors can be inserted in the formula for the components of the coefficient of error (adapted from 
(Gundersen and Jensen, 1987)). The two components are noise and variation due to sampling ( ):𝑉𝐴𝑅𝑆𝑈𝑅𝑆

𝑁𝑜𝑖𝑠𝑒 = 0.0724 ∙  
𝑏
𝑎

 ∙ 𝑛 ∙
𝑛

∑
1

𝑃𝑖

𝑉𝐴𝑅𝑆𝑈𝑅𝑆 =
(3 ∙ (𝐴 ‒ 𝑛𝑜𝑖𝑠𝑒) ‒ 4 ∙ 𝐵 + 𝐶)

240

Where n is the number of planes and the factor is the boundary length of the object in a plane divided by the 

𝑏
𝑎

 

root of the area of the object in that plane. The boundary length for each plane was extracted using the ImageJ 
“Analyze particles” routine (where it is called “Perimeter”). This routine also delivers the area of the objects in 
each plane. The area was already found using the stereological approach:  results in the estimated area. 𝑃𝑖 ∙  𝐴𝑝

The total variation is the sum of these two components and the coefficient of error (CE), is the calculated as:

𝐶𝐸 =
𝑛𝑜𝑖𝑠𝑒 +  𝑉𝐴𝑅𝑆𝑈𝑅𝑆

𝑛

∑
1

𝑃𝑖

From the above example, the noise, , total variation and CE was calculated for each orthogonal 𝑉𝐴𝑅𝑆𝑈𝑅𝑆

dimension:

noise 𝑉𝐴𝑅𝑆𝑈𝑅𝑆 Total CE



Variation
XY 34.9 4.20 39.1 1.09%
XZ 34.7 8.42 43.1 1.25%
YZ 38.8 10.6 49.4 1.30%
Average 36.2 7.73 43.9 1.21%

Table SI-3. The coefficient of error for one object, dissected into its components for each orthogonal 
dimension. 

The coefficient of error (CE) was calculated for the example volume estimate at 1.21%, based on a total of 
1638 point counts (572 in XY, 525 in XZ and 541 in YZ). The missing wedge effect causes a higher variation in 
XZ and especially in YZ, where the effect is the strongest. In average over the three dimensions, 82.4% of the 
variation derives from the noise (and 17.6% from the sampling). 

Curvature estimation

Curvature, and in particular the integrated mean curvature in its normalized form (M is defined as the 
algebraic average of the two curvatures in each point on the surface integrated over the surface), is obtained by a 
tangent count(Dehoff): a horizontal line is swept down across each orthogonal slide and sites of tangents with 
convex (Tcx, dotted yellow in figure 2D) and concave (Tcc, dashed green line in Figure 2D) boundaries are 
counted.  is the volume corrected integral mean curvature. The  is calculated as:𝑀𝑣 𝑀𝑣

𝐸𝑠𝑡(𝑀𝑣) =
1
𝑑

∙
𝜋

𝐸𝑠𝑡(𝑆)
∙

𝑛

∑
1

𝑇𝑐𝑥 ‒ 𝑇𝑐𝑐

𝐸𝑠𝑡(𝑀𝑣) =
1
3

∙
𝜋

14109
∙

𝑛

∑
1

228 ‒ 68 =  11 875 
𝜇𝑚

𝜇𝑚3

Figure SI-9. Falso-colored 3D rendering of an Au nanostars. The color represents local curvature 
(Blue: concave, Red, Conves)

5. Thermal reshaping of Au nanostars 



Figure SI-10. Spectral evolution of Au nanostars subjected at thermo-treatment: 140 °C in DMF. 
Right: TEM images of Au nanostars before (top) and after (bottom) thermal reshaping. 

6. Simulation scripts 

The object was simulated in ImageJ macro language according to the following code:

newImage("Untitled", "8-bit black", 400, 400, 400);

//fiducials
fiducial=50;

// shell
stack_depth=400;
Max_radius=300;  //diameter
start_color=140;
end_color=40;
step=(start_color-end_color)/Max_radius;
gray_range=start_color;
starting_slice=(stack_depth/2-Max_radius/2);
for (e=starting_slice;e<Max_radius+starting_slice+1;e++){

setSlice(e);
radius=sqrt(abs(Max_radius*Max_radius)-( (Max_radius-2*( e-

starting_slice))* (Max_radius-2*( e-starting_slice))));
gray_range=abs(gray_range-step);
setForegroundColor(gray_range,gray_range,gray_range);
makeOval(stack_depth/2-(radius/2), stack_depth/2-(radius/2),radius, 

radius);

if (radius > 0) {
run("Fill", "slice");

}
}

// particle
stack_depth=400;
Max_radius=200;  //diameter
start_color=255;
end_color=60;
step=(start_color-end_color)/Max_radius;
gray_range=start_color;
starting_slice=(stack_depth/2-Max_radius/2);
for (e=starting_slice;e<Max_radius+starting_slice+1;e++){

setSlice(e);



radius=sqrt(abs(Max_radius*Max_radius)-( (Max_radius-2*( e-
starting_slice))* (Max_radius-2*( e-starting_slice))));

gray_range=abs(gray_range-step);
setForegroundColor(gray_range,gray_range,gray_range);
makeOval(stack_depth/2-(radius/2), stack_depth/2-(radius/2),radius, 

radius);
if (radius > 0) {

run("Fill", "slice");
}

}

// fiducials
stack_depth=400;
Max_radius=50;
setForegroundColor(255, 255, 255);
X_shift=100;
Y_shift=100;
for (e=1;e<stack_depth+1;e++){

slice=(stack_depth-Max_radius/2)-((stack_depth-Max_radius))+e/2;
setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));
makeOval(X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-

radius)/2,radius, radius);
if (radius > 0) {

run("Fill", "slice");
}

}

stack_depth=400;
Max_radius=50;
setForegroundColor(255, 255, 255);
X_shift=100;
Y_shift=-100;
for (e=1;e<stack_depth+1;e++){

slice=(stack_depth-Max_radius/2)-((stack_depth-Max_radius))+e/2;
setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));
makeOval(X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-

radius)/2,radius, radius);
if (radius > 0) {

run("Fill", "slice");
}

}

stack_depth=400;
Max_radius=50;
setForegroundColor(255, 255, 255);
X_shift=-100;
Y_shift=-100;

for (e=1;e<stack_depth+1;e++){
slice=(stack_depth-Max_radius/2)-((stack_depth-Max_radius))+e/2;
setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));
makeOval(X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-

radius)/2,radius, radius);
if (radius > 0) {

run("Fill", "slice");



}
}
stack_depth=400;
Max_radius=50;
setForegroundColor(255, 255, 255);
X_shift=fiducial;
Y_shift=fiducial;
Z_shift=300;
for (e=1;e<stack_depth-Z_shift;e++){

slice=(-1/2)*Max_radius+Z_shift+(stack_depth-Max_radius/2)-
((stack_depth-Max_radius))+e/2;

setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));
makeOval(X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-

radius)/2,radius, radius);
if (radius > 0) {

run("Fill", "slice");
}

}

stack_depth=400;
Max_radius=50;
setForegroundColor(255, 255, 255);
X_shift=-1*fiducial;
Y_shift=fiducial;
Z_shift=300;
for (e=1;e<stack_depth-Z_shift;e++){

slice=(-1/2)*Max_radius+Z_shift+(stack_depth-Max_radius/2)-
((stack_depth-Max_radius))+e/2;

setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));
makeOval(X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-

radius)/2,radius, radius);
if (radius > 0) {

run("Fill", "slice");
}

}

stack_depth=400;
Max_radius=50;
setForegroundColor(255, 255, 255);
X_shift=fiducial;
Y_shift=-1*fiducial;
Z_shift=300;
for (e=1;e<stack_depth-Z_shift;e++){

slice=(-1/2)*Max_radius+Z_shift+(stack_depth-Max_radius/2)-
((stack_depth-Max_radius))+e/2;

setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));
makeOval(X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-

radius)/2,radius, radius);
if (radius > 0) {

run("Fill", "slice");
}

}

stack_depth=400;
Max_radius=50;



setForegroundColor(255, 255, 255);
X_shift=-1*fiducial;
Y_shift=-1*fiducial;
Z_shift=300;
for (e=1;e<stack_depth-Z_shift;e++){

slice=(-1/2)*Max_radius+Z_shift+(stack_depth-Max_radius/2)-
((stack_depth-Max_radius))+e/2;

setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));
makeOval(X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-

radius)/2,radius, radius);
if (radius > 0) {

run("Fill", "slice");
}

}

7. Detailed result for all Au nanostars 
Nanostars

Particle # Surface Volume (CE) Curvature
1 9288.2 34 732.2 (1.73%) 0.027 8
2 11182.6 40 168.2 (1.38%) 0.020 1
3 8015.9 27 798.8 (1.69%) 0.025 8
4 8468.3 32 876.8 (1.66%) 0.022 8
5 7040.4 29 914.6 (2.18%) 0.018 9
6 7648.3 19 726.1 (1.5%) 0.031 1
7 10 532.3 33 820.7 (1.50%) 0.023 9
8 13 741.5 45 181.1 (1.30%) 0.023 1
9 10 334.4 35 708.7 (1.67%) 0.020 0

10 11 126.1 32 811.7 (1.37%) 0.024 5
11 12 016.7 39 680.0 (1.85%) 0.023 5
12 8284.5 30 272.7 (1.25 %) 0.027 0
13 8397.6 50 226.6 (1.75%) 0.031 5
14 9274.1 33 853.3 (1.77%) 0.020 1
15 9500.3 35 480.9 (1.77%) 0.025 6
16 10 292.0 39 126.6 (1.49%) 0.025 3

Mean 9696.5 nm2 35 086.2 nm3 (1.62 %) 0.024 4 nm/nm3

SD 1772.1 nm2 7219.9 nm3 0.003 9 nm/nm3

Figure SI-4. Volume, surface and mean local curvature for all nanostars in the study.

8. Detailed result for all Au nanospheres 

Nanospheres
Particle # Surface Volume (CE) Curvature

1 6833 45 511 (2.72%) 0.014 1
2 6990 37 675 (3.05%) 0.014 1
3 5341 29 688 (4.28%) 0.017 1
4 7226 47 320 (2.73%) 0.016 0
5 7618 59 225 (2.23%) 0.014 5



6 8011 52 594 (2.45%) 0.016 8
7 7933 52 896 (2.44%) 0.015 7
8 8561 56 965 (2.32%) 0.014 7
9 7147 44 004 (2.80%) 0.017 8

10 7383 42 950 (2.79%) 0.016 2
11 7697 50 485 (2.49%) 0.013 3
12 7304 47 018 (2.77%) 0.015 7
13 7304 48 073 (2.49%) 0.015 7
14 6362 35 415 (3.20%) 0.015 4
15 7226 45 662 (2.71%) 0.014 1
16 5733 30 743 (3.53%) 0.020 5
17 6833 36 469 (3.16%) 0.016 6
18 6755 38 881 (2.95%) 0.017 8
19 6833 42 648 (2.74%) 0.016 2
20 8482 54 252 (2.46%) 0.017 8

Mean 7179 nm2 44 923 nm3 (2.82%) 0.016 0 
nm/nm3

SD 799 nm2 8287 nm3 0.001 7 
nm/nm3

Figure SI-5. Volume, surface and mean local curvature for all spherical nanoparticles in the study.

9. Precision of the stereological estimates of nanostars surface

Figure SI-11. Development of the standard error of mean of the surface area (estimated by the Fakir 
probe) with increasing number of experiments (particles). After 5 Au nanostars, no further reduction of 
SEM is observed.

10. Size analysis of single Au nanospheres used in aggregates
25 images were recorded automatically recorded in SURS fashion (SI-11A), imported in ImageJ and 
thresholded (SI-11B) using the default setting. The analysis modelled the particles as ovals and calculated the 
major and minor axes (SI-11C). Finally, a histogram plot of half the major axis, as a marker for the particle 
radius, of 27363 particles (line in SI-11D) was plotted above the histogram of the radii estimated by the Cavaieri 
probe (n=48). The number of bin adapted to the number of observations (n) using the following this function 

 There is no significant difference.𝐵 =  𝑛.



Figure SI-12. TEM micrograph (A), thresholded (B) and modelled (C) of one of 25 images used for the 
radius calculation from single particles. The histograms for major axis of single, non-aggregated particles 
(line) overlaps with the box histogram of particle radius inside the aggregate.

11. Sandbox method for fractal dimension in 3D

Figure SI-13. Graphical representation of the expansion of the sandbox method in 3D. The volume of the 
aggregate is assessed within each box. The fractal dimension is a function of the natural logarithm of the 
aggregate’s volume within each box, plotted against the natural logarithm of the volume of that box.

12. Time and resources

All tomographic recordings and stereological analysis were performed by one person. The time and resources 
required for these experiments according to these categories:

Sample preparation

It is assumed that the objects are available at the start of the quantification steps. The preparation of the objects 
(by dropcasting or nebulization) takes little time, but a sufficient long period of time must be allowed for drying 
(3h), as no water may enter the transmission electron microscope. No special instruments are required.

Data recording / 3D reconstruction

The recording of a single tilt series takes about 30 minutes and is automated. The alignment and reconstruction 
requires hands-on action and takes about the same period of time. Ideally, the first tilt series is reconstructed by 
the time the second tilt series has finished its recording. Working this efficiently, about 16 datasets can be 
recorded in a typical day. A conventional TEM and an up-to-date PC are required. 



Pilot study

Once the datasets are recorded, a decision must be made on variables in the stereological analysis. In particular, 
the area per point, the distance between lines and the k factor influence the time needed to analyze the data and 
the final precision. This step also includes the design of the spreadsheet data. Estimated time: a half day per 
study. A normal laptop sufficed.

Stereological analysis

Once setup, the analysis per se is a comparatively short affair. The use of a mechanical click-counter tool makes 
the procedure even more efficient. The counts were entered in spreadsheet software, which was the most 
demanding step, as it may take concentration the analysis itself. In average, about 10 minutes per Au nanostars 
were needed, or less than 3 hours for the entire study. The analysis of the Au aggregates was performed within 1 
day, since the precision was chosen to be lower and smaller aggregates were processed faster. A normal laptop 
sufficed.

Summarizing data

Finally, the data is summarized spreadsheet and formulas, e.g. for the calculation of the CE, as programmed in 
the spreadsheet. Time required: 1 hour. A normal laptop sufficed.

1: 1 day

2: 2 days

3 1 day

4 2 days

5 2 days

13. Agreement of fractal dimension measurement
The Bland-Altman plot is used to show the agreement between the two methods used (Cavalieri estimate and 
scaling) to estimate the fractal dimension. The mean difference between the methods is 0.08. 



Figure SI-14. Bland-Altman plot of the results of the two methods used to estimate the fractal dimension. 
The upper and lower dotted lines denote 1.96 standard deviations. The central line the mean difference 
between the methods.

The Students’t test was used to assess significant differences between the two sets of results. The prerequisites 
for the Student’s t test were fulfilled: normal distribution (Saphiro-Wilk test: W=0.97361, p=0.3609 for the 
Cavalieri estimates) and independent from each other. The statistic t was calculated at 1.3101, with a p value of 
0.1948.
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