Supporting Information

Homologous NiO//Ni₂P Nanoarrays Grown on Nickel Foams: A Well

Matched Electrode Pair with High Stability in Overall Water Splitting

Jinlong Zheng, Wei Zhou,* Tong Liu, Chengbo Wang, Shijie Liu and Lin Guo*

School of Chemistry and Environment, Beihang University, Beijing 100191, China

Fig. S1 (a) XRD pattern of Ni foam which can be indexed to cubic Ni (JCPDF No. 04-0850). (b) XRD pattern of the precursor. The peaks match well with the component of $Ni(SO_4)_{0.3}(OH)_{1.4}$ (JCPDS No. 41-1424).

Fig. S2 (a, b) SEM images of Ni foam which was used as substrate to prepared the sample. The Ni foam has a clean surface after treatment.

Fig. S3 Low magnified SEM images of the Ni(SO₄)_{0.3}OH_{1.4} precursor with synthesis time of 4 h (a), 6 h (b) and 8 h (c). The insets show the green color of the precursors turn darker along with the prolonged reaction time. (d-f) High magnified SEM images of the precursors with belt shape. They have little difference in morphology except the length. The lengths of the precursors are shown in the insets with scale bars of 5 μ m. The lengths are ~5, ~8 and ~11 μ m corresponding to the reaction time of 4, 6, and 8 hrs, respectively. (g, h) TEM images of the Ni(SO₄)_{0.3}OH_{1.4} precursor with synthesis time of 6 h. Fig. S3h is taken from the marked region in Fig. S3g. (i) HRTEM image corresponding to the circle in Fig. S3h. The lattice spacings of 0.22 nm are in accord with the (2 1 -2) planes of the Ni(SO₄)_{0.3}OH_{1.4} in agreement with the above XRD result.

Fig. S4 XRD patterns of the NiO@NF-6, Ni₂P@NF-6 and Ni₃S₂@NFi-6. The peaks confirm the component of NiO, Ni₂P, and Ni₃S₂ in agreement with JCPDS No. 47-1049, 74-1385, and 44-1418, respectively. The strong peaks come from the Ni foam as marked in the patterns.

Fig. S5 (a-c) SEM images of NiO@NF-4, Ni₂P@NF-4, and Ni₃S₂@NF-4 and (d-f) SEM images of NiO@NF-8, Ni₂P@NF-8 and Ni₃S₂@NF-8 in sequence. The corresponding insets show the thickness of the samples with scale bars of 5 μ m. The film thickness of NiO@NF-4, Ni₂P@NF-4 and Ni₃S₂@NF-4 were ~5 μ m while the thickness of NiO@NF-8, Ni₂P@NF-8 and Ni₃S₂@NF-8 were ~11 μ m, in accordance with the film thickness of their precursors.

Fig. S6 (a) XRD patterns of the NiO@NF-4, the Ni₂P@NF-4, and the Ni₃S₂@NF-4. (b) XRD patterns of the NiO@NF-8, the Ni₂P@NF-8, and the Ni₃S₂@NF-8. The Ni_xM_y@NF-4 (M=O, S, P) and the Ni_xM_y@NF-8 have the same components with the Ni_xM_y@NF-6 as shown in Fig. S4.

Fig. S7 LSV data of the NiO@NF-6, Ni₂P@NF-6, Ni₃S₂@NF-6 samples and the NF in 1.0 mol L⁻¹ KOH aqueous solution with a scan rate of 5 mV s⁻¹ for OER. The overpotential of NiO@NF-6 was 570 mV at 100 mA cm⁻², 55 mV and 147 mV less than that of Ni₂P@NF-6 and Ni₃S₂@NF-6. The current density of NF could not reach 30 mA cm⁻² at the overpotential of 770 mV.

Electrode	Electrolyte	Loading (mg cm ⁻²)	η @ 10 mA cm ⁻² (mV)	Tafel slop (mV dec ⁻¹)	Reference
NiO@NF-6	1 М КОН	3.5	405	109	Our work
15-30 nm NiO NPs	0.1 M KOH	0.36	396	54	Nano Energy, 2015, 12, 115-122
~40 nm NiO NPs	1 М КОН	0.2	427	117	Chem. Commun., 2015, 51, 7851-7854
8-30 nm NiO NPs	0.1 M KOH	0.21	510	N.A.	Angew. Chem. Int. Ed. 2014, 53, 8508-8512
~3.8 nm NiO NPs	0.5 M KOH	0.088	325	N.A.	ACS Nano, 2015, 9, 5180-5188
Ni _x Co _{3–x} O ₄ nanowires	1 М КОН	0.7	337	75	ACS Appl. Mater. Interfaces, 2016, 8, 3208-3214
NiFeO _x /carbon fibre paper	1 M NaOH	1.6	350	44	Nat. Commun. 2015, 6, 7261
Ni-Co ₂ -O hollow nanosponges	1 M KOH	0.2	362	64	Chem. Commun., 2015, 51, 7851-7854
Fe-nitrogen-carbon sheets/NiO	0.1 M KOH	0.24	390	76	Angew. Chem. Int. Ed. 2015, 54,10530-10534
nitrogen-doped multiwall carbon nanotubes/NiO-Ni	1 M KOH	0.21	400	80	Angew. Chem. Int. Ed. 2015, 54, 9654-9658
8-30 nm Ni _x O _y / nitrogen- doped carbon	0.1 M KOH	0.21	410	N.A.	Angew. Chem. Int. Ed. 2014, 53, 8508-8512

Table S1 Comparison of OER activity of the NiO@NF-6 with recently reported NiO-based catalysts.

Electrode	Overpotential (mV, 10 mA cm ⁻²)	Overpotential (mV, 100 mA cm ⁻²)	Tafel slope (mV dec ⁻¹)
NiO@NF-4	484	655	121
NiO@NF-6	405	570	109
NiO@NF-8	486	1	152
Ni₂P@NF-4	156	704	304
Ni₂P@NF-6	142	625	297
Ni₂P@NF-8	152	664	303
Ni ₃ S ₂ @NF-4	163	1	362
Ni ₃ S ₂ @NF-6	151	717	337
Ni ₃ S ₂ @NF-8	161	/	355
NF	620	/	223

Table S2 Values of Overpotentials and Tafel slopes of a series of NiO@NF, Ni₂P@NF, andNi₃S₂@NF electrodes for OER.

/ could not reach 100 mA cm⁻² in the voltage range we selected.

Fig. S8 LSV curves of (a) $Ni_2P@NF-6$ and (b) $Ni_3S_2@NF-6$ in 1 mol L⁻¹ KOH aqueous solution with a scan rate of 5, 1 and 0.1 mV s⁻¹ for OER, respectively. (c) and (d) the corresponding Tafel plots.

Fig. S9 Cyclic voltammograms of (a) NiO@NF-6, (b) Ni₂P@NF-6 and (c) Ni₃S₂@NF-6 obtained in 1.2-1.3 V vs. RHE region at scan rates of 10, 20, 40, 80, 120 and 160 mV s⁻¹, respectively. (d) The difference in current density (*j*) between the anodic and cathodic sweeps $(\Delta j = j_{anodic} - j_{cathodic})$ at 1.25 V vs. RHE versus scan rates for NiO@NF-6, Ni₂P@NF-6 and Ni₃S₂@NF-6. The linear slope was equivalent to twice of the double-layer capacitance (C_{dl}).

Fig. S10 Nyquist plots of the NiO@NF-6, the Ni₂P@NF-6, and the Ni₃S₂@NF-6 for OER.

The curves were obtained by AC impedance spectroscopy at around overpotential of 500 mV in 1 mol·L⁻¹ KOH aqueous solution with 5 mV amplitude and frequency range from 1 Hz to 100 kHz. Inset: the corresponding equivalent circuit diagram consisting of an electrolyte resistance (R_s), a charge-transfer resistance (R_{ct}), and a constant-phase element (CPE). The R_s was obtained by the first intersection of the semicircle and the X axis while the R_{ct} equaled to the diameter of the semicircle. The R_s of the NiO@NF-6, the Ni₂P@NF-6, and the Ni₃S₂@NF-6 were 3.57, 3.88, and 4.10 Ω and the R_{ct} were 1.77, 4.37, and 7.56 Ω , respectively.

Table S3 Values of Overpotentials and Tafel slopes of a series of NiO@NF, Ni₂P@NF, and Ni₃S₂@NF electrodes for HER.

Electrode	Overpotential (mV, 10 mA cm ⁻²)	Tafel slope (mV dec ^{.1})
NiO@NF-4	322	263
NiO@NF-6	310	231
NiO@NF-8	331	317
Ni₂P@NF-4	114	127
Ni₂P@NF-6	99	120
Ni₂P@NF-8	121	128
Ni ₃ S ₂ @NF-4	139	161
Ni ₃ S ₂ @NF-6	114	134
Ni ₃ S ₂ @NF-8	136	163
NF	494	222

Electrocatalyst	Electrolyte	Loading (mg cm ⁻²)	η @ 10 mA cm ⁻² (mV)	Tafel slop (mV dec ⁻¹)	Reference
Ni₂P@NF-6	1 M KOH	5.6	58 (J=5) 99 (J=10) 149 (J=20)	111	Our work
Ni-P film/copper foam	1 M KOH	~5.0	98	55	J. Power Sources, 2015, 299, 342-346
Ni ₅ P ₄ film/Ni foil	1 M KOH	13.9	159	~53	Angew. Chem. Int. Ed. 2015, 54, 12361-12365
amorphous Ni-P microsphere	1 M KOH	1.5	~170	N.A.	J. Mater. Chem. A, 2014, 2, 18593-18599
∼10 nm Ni₂P NPs	1 M KOH	1.8	221	N.A.	Energy Environ. Sci., 2015, 8, 2347-2351
10-50 nm Ni₂P NPs	1 М КОН	0.38	250 (<i>J</i> =20)	100	Phys. Chem. Chem. Phys., 2014, 16, 5917- 5921
17 nm Ni₂P NPs	1 M KOH	1.0	205 (<i>J</i> =20)	N.A.	J. Am. Chem. Soc. 2013, 135, 9267-9270
Ni-P nano plates	1 M KOH	0.286	350	132	Chem. Commun., 2016, 52, 1633-1636
Porous Urchin-Like Ni₂P/Ni/Ni foam	1 M KOH	77.6	98	72	ACS Catal. 2016, 6, 714-721
NiP ₂ nanosheet/carbon cloth	1 М КОН	4.3	102	65	Nanoscale, 2014, 6, 13440-13445
amorphous W- doped Ni-P microsphere	1 М КОН	1.5	110 (<i>J</i> =5)	98	J. Mater. Chem. A, 2014, 2, 18593-18599
Ni-Co-P-300	1 M KOH	0.286	150	61	Chem. Commun., 2016, 52, 1633-1636

Table S4 Comparison of HER activity of the Ni $_2$ P@NF-6 with recently reported phosphide catalysts.

Table S5 Comparison of HER activity of the $Ni_3S_2@NF-6$ with recently reported sulfide catalysts.

Electrocatalyst	Electrolyte	Loanding (mg cm ⁻²)	η @ 10 mA cm ⁻² (mV)	Tafel slop (mV dec ⁻¹)	Reference
		(ing cin)	114 (1=10)		
NiaSa@NE-6	1 M KOH	6.4	163 (<i>J</i> =20)	134	Our work
N1302@INI -0			263(J=50)	134	
			203 (3-30)		
NiS film/NE		43	158 (<i>J</i> =20)	83	Chem. Commun., 2016,
	TWINGIT			00	52, 1486-1489
		1.2	190		RSC Adv., 2015, 5,
NIS ₂ nanosheets 1 M	1 M NaOH			80	32976-32982
		4.0	222		J. Am. Chem. Soc. 2015,
Ni ₃ S ₂ /NF 1 M KOF		1.6	223	N.A.	137, 14023-14026
Ni _{0.33} Co _{0.67} S ₂					Adv. Energy Mater.
nanowires	1 M KOH	0.3	88	118	2015, 5, 1402031
NiCo ₂ S ₄ nanowires		4.0	000 (1 50)	4.4.4	Nanoscale, 2015, 7,
array/ carbon cloth	1 M KOH	~4.0	263 (J=50)	141	15122-15126

Fig. S11 Cyclic voltammograms of (a) NiO@NF-6, (b) Ni₂P@NF-6 and (c) Ni₃S₂@NF-6 obtained in 0.15-0.25 V vs. RHE region at scan rates of 10, 20, 40, 80, 120 and 160 mV s⁻¹, respectively. (d) The difference in current density (*j*) between the anodic and cathodic sweeps $(\Delta j = j_{anodic} - j_{cathodic})$ at 0.20 V vs. RHE versus scan rates for NiO@NF-6, Ni₂P@NF-6 and Ni₃S₂@NF-6. The linear slope is equivalent to twice of the double-layer capacitance (C_{dl}).

Fig. S12 Nyquist plots of the NiO@NF-6, Ni₂P@NF-6, and Ni₃S₂@NF-6 for HER.

The curves were obtained by AC impedance spectroscopy at around overpotential of 300 mV in 1 mol·L⁻¹ KOH aqueous solution with 5 mV amplitude and frequency range from 1 Hz to 100 kHz. Inset: the corresponding equivalent circuit diagram consisting of a R_s , a R_{ct} , and a CPE. The R_s of the NiO@NF-6, the Ni₂P@NF-6, and the Ni₃S₂@NF-6 were 3.02, 2.53, and 3.09 Ω and the R_{ct} were 5.54, 1.76, and 2.17 Ω , respectively.

Electrode pair	Electrolyte	E (V)ª	Loading (mg cm ⁻²)	Current density retention (%, h)	Reference
*NiO@NF-6 // Ni ₂ P@NF-6	1 M KOH	1.65	3.5 / 5.6	92, 120	Our Work
Ni ₃ S ₂ @NF-6 // Ni ₂ P@NF-6	1 M KOH	1.69	6.4 / 5.6	79, 30	Our Work
Ni ₂ P@NF-6 // Ni ₂ P@NF-6	1 M KOH	1.70	5.6 / 5.6	89, 30	Our Work
Ni ₃ S ₂ @NF-6 // Ni ₃ S ₂ @NF-6	1 M KOH	1.77	6.4 / 6.4	73, 30	Our Work
NiO@NF-6 // Ni ₃ S2@NF-6	1 M KOH	1.76	3.5 / 6.4	83, 30	Our Work
NiO@NF-6 // NiO@NF-6	1 M KOH	1.81	3.5 / 3.5	72, 30	Our Work
NiFe LDH // NiO/Ni-CNT ^b	1 M KOH	1.50 (<i>J</i> =20)	8.0	~93, 24	Nat. Commun. 2014, 6, 4695
NiFe LDH // Ni@NiO/Cr ₂ O ₃	1 M KOH	1.5 (<i>J</i> =20)	24	~77, 50	Angew. Chem. Int. Ed. 2015, 54, 11989-11993
CoNi(OH) _x // NiN _x	1 M KOH	~1.64	0.72 / 0.75	74, 0.17 h	Adv. Energy Mater. 2016, 6, 1501661
NiCo ₂ O ₄ / Ni _{0.33} Co _{0.67} S ₂	1 M KOH	~1.72	0.3 / 0.3	~85, 20 h	Adv. Energy Mater. 2015, 5, 1402031
Ni ₂ P/Ni/NF // Ni ₂ P/Ni/NF	1 M KOH	1.49	77.6	~92, 40	ACS Catal. 2016, 6, 714-721
Ni-P/Cu foam // Ni-P/Cu foam	1 M KOH	1.68	~5.0	~72, 15	J. Power Sources, 2015, 299, 342-346
Ni-B/Ni foam // Ni-B/Ni foam	1 M KOH	1.69 (<i>J=15</i>)	12.3	~76, 10	Nanotechnology, 2016, 27, 12LT01
NiFe LDH/Ni foam // NiFe LDH/Ni foam	1 M KOH	1.70	N.A.	~73, 10	Science, 2014, 345, 1593-1596
Ni₅P₄ film Ni foil // Ni₅P₄ film Ni foil	1 M KOH	~1.70	13.9	N.A.	Angew. Chem. Int. Ed. 2015, 54, 12361-12365
Ni ₃ S ₂ /Ni foam // Ni ₃ S ₂ /Ni foam	1 M KOH	1.76 (<i>J</i> =13)	1.6	~66, 150	J. Am. Chem. Soc. 2015, 137, 14023-14026

Table S6 Comparison of different Ni-based catalysts for overall water splitting with recently reported work.

a. $J = 10 \text{ mA/cm}^2$; b. LDH = layered double hydroxide, CNT = carbon nanotube.

* a well matched electrode pair for overall water splitting.

All the current density retention and stability of the reported papers were tested by chronoamperometry.

Electrode pair	Electrolyte	E (V, J=10 mA cm ⁻²)	Loading (mg cm ⁻²)
NiO@NF-4 // Ni₂P@NF-4	1 M KOH	1.77	2.7 / 4.5
NiO@NF-4 // Ni ₃ S ₂ @NF-4	1 M KOH	1.79	2.7 / 5.0
NiO@NF-4 // NiO@NF-4	1 M KOH	1.99	2.7 / 2.7
NiO@NF-8 // Ni₂P@NF-8	1 M KOH	1.73	5.0 / 8.1
NiO@NF-8 // Ni ₃ S ₂ @NF-8	1 M KOH	1.80	5.0 / 8.5
NiO@NF-8 // NiO@NF-8	1 M KOH	1.97	5.0 / 5.0

Table S7 The NiO@NF-4//Ni_x M_y @NF-4 and NiO@NF-8//Ni_x M_y @NF-8 (M=O, S, and P) electrode pairs for overall water splitting.

OER	HER	Potential (V, 10 mA cm ⁻²)	Superiority of electrochemical performance
	Ni₂P@NF-6	1.65	Overall water splitting: NiO@NF-6 // Ni ₂ P@NF-6 >
NiO@NF-6	Ni ₃ S ₂ @NF-6	1.76	NiO@NF-6 // Ni ₃ S ₂ @NF-6 > NiO@NF-6 // NiO@NF-6
	NiO@NF-6	1.81	HER: Ni ₂ P@NF-6 > Ni ₃ S ₂ @NF-6 > NiO@NF-6
	Ni₂P@NF-6	1.70	Overall water splitting: Ni ₂ P@NF-6 // Ni ₂ P@NF-6 >
Ni₂P@NF-6	Ni ₃ S ₂ @NF-6	1.75	Ni2P@NF-6 // Ni3S2@NF-6 > Ni2P@NF-6 // NiO@NF-6
	NiO@NF-6	1.84	HER: Ni ₂ P@NF-6 > Ni ₃ S ₂ @NF-6 > NiO@NF-6
	Ni₂P@NF-6	1.69	Overall water splitting: Ni₃S₂@NF-6 // Ni₂P@NF-6 >
Ni₃S₂@NF-6	Ni ₃ S ₂ @NF-6	1.77	Ni ₃ S ₂ @NF-6 // Ni ₃ S ₂ @NF-6 > Ni ₃ S ₂ @NF-6 // NiO@NF-6
	NiO@NF-6	1.84	HER: Ni ₂ P@NF-6 > Ni ₃ S ₂ @NF-6 > NiO@NF-6
NiO@NF-6		1.65	Overall water splitting: NiO@NF-6 // Ni2P@NF-6 >
Ni ₂ P@NF-6	Ni₂P@NF-6	1.70	Ni₂P@NF-6 // Ni₂P@NF-6 ≈ Ni₃S₂@NF-6 // Ni₂P@NF-6
Ni ₃ S ₂ @NF-6	_	1.69	OER: NiO@NF-6 > Ni ₂ P@NF-6 > Ni ₃ S ₂ @NF-6
NiO@NF-6		1.76	Overall water splitting: NiO@NF-6 // Ni₃S₂@NF-6 ≈
Ni ₂ P@NF-6	Ni₃S₂@NF-6	1.75	Ni₂P@NF-6 // Ni₃S₂@NF-6 ≈ Ni₃S₂@NF-6 // Ni₃S₂@NF-6
Ni ₃ S ₂ @NF-6		1.77	OER: NiO@NF-6 > Ni ₂ P@NF-6 > Ni ₃ S ₂ @NF-6
NiO@NF-6	_	1.81	Overall water splitting: NiO@NF-6 // NiO@NF-6 >
Ni ₂ P@NF-6	NiO@NF-6	1.84	Ni₂P@NF-6 // NiO@NF-6 ≈ Ni₃S₂@NF-6 // NiO@NF-6
Ni ₃ S ₂ @NF-6		1.84	OER: NiO@NF-6 > Ni ₂ P@NF-6 > Ni ₃ S ₂ @NF-6

Table S8 Summary of electrochemical performance using $Ni_xM_y@NF-6$ (M=O, S, and P) as electrodes for overall water splitting.

Fig. S13 The optical photo of the Ni foam, the NiO@NF-6 before and after long-term OER tests.

The Ni foams were fragile after heat treatment under high temperature in our experiments. Considering the aim of this manuscript to fabricate well-paired electrodes by choosing suitable nickel compounds, we didn't take deep consideration before. The NiO@NF-6 could maintain the structure in our careful long-term OER test.