Supporting Information:

Pine Needle-Derived Microporous Nitrogen-doped Carbon Frameworks with High Performances for Electrocatalytic Hydrogen Evolution and Supercapacitors

Guoyin Zhu,^{a#} Lianbo Ma,^{a#} Hongling Lv,^a Yi Hu,^a Tao Chen,^a Renpeng Chen,^a Jia Liang,^a Xiao Wang,^a Yanrong Wang,^a Changzeng Yan,^a Zuoxiu Tie,^a Zhong Jin,^{*a} and Jie Liu^{*ab}

^a Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China

^b Department of Chemistry, Duke University, Durham, NC 27708, USA

*E-mail addresses of corresponding authors: <u>zhongjin@nju.edu.cn</u> (Prof. Z. Jin) and <u>j.liu@duke.edu</u> (Prof. J. Liu)

[#] These two authors contributed equally to this work.

Ref.	HER catalyst	Onset overpotential (V)	Tafel slope (mV/dec)	η (mV) at <i>J</i> = -10 mA/cm ²
This work	PNC-800	-0.004	45.9	-62
[23]	Root nodules-800	-0.027	67.8	
[27]	Ggraphitic carbon nitride nanoribbon-graphene	-0.08	54	-207
[28]	Ggraphitic carbon nitride@ nitrogen-doped graphene	-0.12	51.1	-240
[29]	N, P-graphene-1	-0.289	91	-422
[30]	N and S co-doped nanoporous graphene	-0.13	81	-276
[31]	monolayer MoS ₂ supported by nanoporous gold	-0.12	46	-226
[32]	MoS ₂ Nanosheets	-0.12	50	-180
[33]	CoS ₂ Nanowires		51.6	~145

Table S1. Electrocatalytic HER performance of PNC material in this work compared

 with those of other materials in the literature.

Ref.	Biomass Precursor	Specific capacitance (C _s , F/g)	Measuremen t Condition	Electrolyte
This work	PNC-900	236 212 183	0.1 A/g 1.0 A/g 20.0 A/g	6.0 M KOH
[26]	human hairs	340	1.0 A/g	6.0 M KOH
[34]	microalgae	200	0.1 A/g	6.0 M LiCl
[35]	broad bean shells	202	0.5 A/g	6.0 M KOH
[36]	fungi	158	0.1 A/g	1.0 M TEABF ₄
[37]	seaweed biopolymer	198	2 mV/s	1.0 M H ₂ SO ₄
[38]	silk proteins	264	0.1 A/g	1.0 M H ₂ SO ₄
[39]	corn cob	221	1.0 A/g	0.5 M H ₂ SO ₄
[40]	rice husks	112	1.0 A/g	1.0 M Na ₂ SO ₄
[41]	eggshell membranes	228	4.0 A/g	1.0 M KOH
[42]	beverages	149	5 mV/s	6.0 M KOH

Table S2. Supercapacitive performance of PNC material in this work compared with those of other materials in the literature.

Figure S1. SEM and TEM images of (a,b) PNC-700, (c,d) PNC-800 and (e,f) PNC-1000, respectively, showing similar morphology compared to that of PNC-900.

Figure S2. (a-d) CV curves of PNC based electrodes at various scan rates ranged between 40–160 mV/s. (e) Capacitive currents of PNC based electrodes at 0.15 V as a function of scan rate.

Figure S3. Time-dependent current density curves of PNC-700, PNC-900, and PNC-1000 under a static overpotential of -0.10 V for 10 h.

Figure S4. CV curves of (a) PNC-700, (b) PNC-800, (c) PNC-900 and (d) PNC-1000 based supercapacitors at the scan rates between 5–100 mV/s, respectively.

Figure S5. Galvanostatic charge-discharge curves of (a,b) PNC-700, (c,d) PNC-800, (e,f) PNC-900 and (g,h) PNC-1000 based supercapacitors in a range of current densities from 0.1 to 20 A/g.

Figure S6. Ragone plots (power density *vs.* energy density) of PNC-based supercapacitors in comparison with other previously-reported N-doped carbon materials.

Table S3. Comparison of the area-normalized capacitances of PNC-900 and otherpreviously-reported N-doped carbon materials.

Ref.	Samples	Area- normalized capacitance (C _A , μF/cm ²)	Measuremen t Condition
This work	PNC-900	9.7	0.1 A/g
[72]	N-doped carbon capsules (N-CC)	14.8	0.1 A/g
[73]	carbonated PANi (CP)	6	-
[74]	nanoporous carbon-1 (CNX-1)	8	0.25 A/g
[75]	carbon nanosheets-700 (CNS-700)	6.8	1.0 A/g
[17]	hierarchical nitrogen-doped carbon nanocages-800 (hNCNC800)	17.4	1.0 A/g
[76]	polypyrrole-derived activated carbons-700 (AC-P700)	7.6	1.0 mV/s