Supporting Information

Effect of the Solvent Used for Fabrication of Perovskite Films by Solvent Dropping on Performance of Perovskite Light-Emitting Diodes

Jae Choul Yu,^a Dae Woo Kim,^a Da Bin Kim,^a Eui Dae Jung,^a Ki-Suk Lee,^a Sukbin Lee,^a

Daniele Di Nuzzo,^b Ji-Seon Kim^c and Myoung Hoon Song *a

^a School of Materials Science Engineering/KIST-UNIST Ulsan Center for Convergent Materials//Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 689-798, Republic of Korea.
 ^b Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
 ^c Department of Physics and Centre for Plastic Electronics, Imperial College London Prince

Consort Road, London, SW7 2AZ, United Kingdom

E-mail: mhsong@unist.ac.kr

Figure S1. Chemical structures of (a) cyclohexane, (b) benzene, (c) toluene and (d) ch lorobenzene.

Figure S2. XRD patterns of $CH_3NH_3PbBr_3$ films prepared using various solvents with PMMA as the encapsulation layer and calculated for $CH_3NH_3PbBr_3$, with preferred ori entations along the (100), (200) and (300) directions.

Figure S3. (a) Speed-time profile of spin-coating process for the solvent dropping met hod. (b-e) SEM images of $CH_3NH_3PbBr_3$ films prepared using chlorobenzene dropping after delays of 0 s (without dropping), 15 s, 30 s and 45 s after beginning the spin-c oating step at 3,000 rpm.

Figure S4. Light-emitting characterization of the PeLEDs with $CH_3NH_3PbBr_3$ films pre pared using chlorobenzene dropping after delays of 0 s (without solvent dropping), 15 s, 30 s and 45 s after beginning the spin-coating step at 3,000 rpm in terms of the (a) current density *vs.* voltage (*J-V*), (b) luminance *vs.* voltage (*L-V*), (c) luminous efficiency *vs.* voltage (*LE-V*), and (d) external quantum efficiency *vs.* voltage (*EQE-V*).

Figure S5. PL spectra for $CH_3NH_3PbBr_3$ films prepared using various solvents dropped on a quartz substrate with PMMA as the encapsulation layer.

Figure S6. Cross-sectional SEM images of CH₃NH₃PbBr₃ films prepared using (a) benzene and (b) chlorobenzene dropping and elemental mappings of bromine and chlorine within CH₃NH₃PbBr₃ films by EDS.

Figure S7. Histograms for each value of (a) luminance, (b) luminous efficiency and (c) EQE of 25 samples from PeLEDs (ITO/PEDOT:PSS/CH₃NH₃PbBr₃ prepared by chlorobenzene dropping/TPBi/LiF/Ag).

Figure S8. The long-term stability of encapsulated PeLEDs with CH₃NH₃PbBr₃ film using benzene, toluene, and chlorobenzene drop-casting method were evaluated in terms of normalized luminance under ambient air conditions.

Table S1. Summary of the solvent polarity indexes.

Solvent	Polarity index	
Cyclohexane	0.004	
Benzene	3.0	
Toluene	2.3	
Chlorobenzene	2.7	

Table S2. Summary of the device performances of PeLEDs with CH₃NH₃PbBr₃ films prepared using chlorobenzene dropping after various delay times after beginning the spin-coating step at 3,000 rpm.

Device configuration	L _{max}	LE _{max}	EQE _{max}
(ITO/PEDOT:PSS/CH ₃ NH ₃ PbBr ₃	[cd/m ²]	[cd/A]	[%]
(Chlorobenzene dropping)/TPBi/LiF/Ag)	@ bias	@ bias	@ bias
Dropping Time 0 s	-	-	-
Dropping Time 15 s	8,490 @	1.24 @	0.27 @
	3.6	3.4	3.4
Dropping Time 30 s	12,330 @	3.12 @	0.67 @
	3.4	2.6	2.6
Dropping Time 45 s	-	-	-