Supporting Information

Autocatalytic Synthesis of Multifunctional Precursors for Fabricating Silica Microspheres with Well-Dispersed Ag and Co₃O₄ Nanoparticles

Linxu Xu, Fang Cui *, Jiajia Zhang, Yanjun Hao, Yan Wang* and Tieyu Cui

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China

*Corresponding author. Tel.: (+86)451-86403646

E-mail address: <u>cuit@hit.edu.cn</u>

Figure.S1.¹H-NMR spectrum (A) and FT-IR spectra (B) of Co(BA)₂

Figure.S1 shows the ¹H-NMR spectrum (A) and FT-IR spectra (B) of Co(BA)₂, in the ¹H-NMR spectrum (**Figure.S1A**), the chemical shift 3.89 ppm is assigned to the protons on β -C. FT-IR spectra (**Figure.1B**) indicates three strong bands of carboxylate groups at 1590cm⁻¹, 1374cm⁻¹ and 707 cm⁻¹ are antisymmetric stretching vibration, symmetric stretching vibration and deformation vibration, respectively. The absorption peak at 1407cm⁻¹ is assigned to the variable-angle vibration of the - CH₂- groups and 550cm⁻¹ is C-Br vibration.

Figure.S2 XRD pattern of AgBr-CoBA₂@SiO₂ composites(A) and Co₃O₄@SiO₂ composites(B)

The XRD pattern of the as-obtained AgBr-CoBA₂@SiO₂ composites (**Figure.S2A**) shows seven well-resolved diffraction peaks in the range of 25-90°, which can be indexed to the (111), (200),(220), (222), (400), (420) and (422) reflections of AgBr (JCPDS NO. 790149), which confirmed that Ag⁺ ions combined with Br⁻. **Figure.S2B** shows the XRD pattern of Co₃O₄@SiO₂ composites, all peaks appear are indexed to face-centered cubic structure of Co₃O₄ spinel phase (JCPDS no.761802).

Figure.S3 UV-Vis spectra of original MB dye solution (a); mixture solution of MB dye and NaBH₄ after reaction for 10 h in the presence of pure SiO₂ (b) and mixture solution of MB dye and NaBH₄ after reaction for 10 h in the presence of Co₃O₄@SiO₂(c)

We prolonging the reaction time of the mixture solution of MB dye and NaBH₄ in the presence of pure SiO₂ and Co₃O₄@SiO₂ composites to 10 h, respectively, as 59.7% and 61.3% concentration decrease was observed, indicating that the adsorption of SiO₂ and the catalytic activity of Co₃O₄@SiO₂ composites is not the critical factor for reduction of the initial MB dye solution concentration.

Figure.S4 The rate constant *k* estimated by the slopes of straight lines of $\ln(At/A0)$ vs. reduction time using 0.1 mg catalysts at different reused circles: (A) 2nd; (B) 3rd; (C) 4th; and (D) 5th. Here, the time that catalytic reaction started is set as the beginning time (t= 0).

Figure.S5 SEM images of AgBr-CoBA2@SiO2 (A) and Ag-Co3O4@SiO2 (B)

Figure S6 The N₂ adsorption-desorption isotherms and pore size distribution of Ag-Co₃O₄@SiO₂ nanocomposites

The BET surface area of Ag-Co₃O₄@SiO₂ nanocomposites is $726m^2/g$, and the pore size distribution exhibits a sharp peak centered at the mean value of ~3.9 nm.

Figure.S7 XPS spectra of the Ag-Co $_3O_4@SiO_2$ nanocomposites

The X-ray photoelectron spectra (XPS) of the Ag-Co₃O₄@SiO₂ composites shown in **Figure.S7** demonstrated that there are tiny amounts of Ag NPs decorated on the surface of silica.