## Supplementary Information

## Homogeneous Cationic Substitution for Two-Dimensional Layered Metal

## **Oxide Nanosheet via Galvanic Exchange Reaction**

Joohyun Lim, Jang Mee Lee, Boyeon Park, Xiaoyan Jin, and Seong-Ju Hwang\*

Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea

\*E-mail: hwangsju@ewha.ac.kr (S.-J. H.)



**Fig. S1** Scanning tunneling electron microscopy–Energy dispersive spectrometry (STEM–EDS) line profiles of (a) FMO-GE1 and (b) FMO-GE3.



**Fig. S2** EDS–elemental maps and powder X-ray diffraction (XRD) patterns of (a) KMO-1, (b) KMO-3, and (c) KMO-RS.



Fig. S3 Transmission electron microscopy (TEM) images of (a), (b) FMO-RS and (c), (d) FMO-GE2.



Fig. S4 Powder XRD pattern of FMO-GE material prepared with 0.5 mmol (in 1 mL water)  $Fe^{2+}$  solution.

| Material                                  | Current density       | Capacity               | Reference  |
|-------------------------------------------|-----------------------|------------------------|------------|
|                                           | (mA g <sup>_1</sup> ) | (mAh g <sup>-1</sup> ) |            |
| FMO-GE2@C                                 | 200                   | 1019                   | [Our work] |
| MnO@C nanowire seeded by Si               | 200                   | 854                    | 1          |
| MnO@reduced graphene oxide                | 200                   | ~620                   | 2          |
| MnO/nanoporous Au                         | 200                   | ~700                   | 3          |
| MnO <sub>2</sub> @CNT microsphere         | 200                   | ~1000                  | 4          |
| MnO <sub>2</sub> @N-doped graphene        | 200                   | ~900                   | 5          |
| MnO <sub>2</sub> -PEI-graphene            | 200                   | ~870                   | 6          |
| Mn <sub>2</sub> O <sub>3</sub> /PEDOT:PSS | 200                   | ~420                   | 7          |
| Mn <sub>3</sub> O₄@graphene membrane      | 200                   | ~650                   | 8          |
| (011) exposed $Mn_3O_4$ single crystal    | 100                   | ~600                   | 9          |
| 3D Mn <sub>3</sub> O <sub>4</sub>         | 200                   | 1166                   | 10         |
|                                           |                       |                        |            |

**Table. S1** Comparison of the capacity of manganese oxided based materials reported in literatures and this work.



**Fig. S5** Powder XRD patterns of the carbon-coated derivatives of (a) FMO-GE1 and (b) FMO-GE3. The Bragg reflections of  $Mn_3O_4$ , MnO, and  $MnFe_2O_4$  phases are denoted as squares, circles, and stars, respectively.



**Fig. S6** Field emission-scanning electron microscopy (FE-SEM) images of (a)  $MnO_2$  nanosheet (NS), (b) SMO-GE1, (c) SMO-GE2, (d) SMO-GE3, and (e) SMO-RS.



Fig. S7 TEM images of (a) MnO<sub>2</sub> NS, (b) SMO-GE1, (c) SMO-GE2, (d) SMO-GE3, and (e) SMO-RS.



Fig. S8 SEM images and SEM–EDS maps of (a) SMO-GE1, (b) SMO-GE2, (c) SMO-GE3, and (d) SMO-RS.



Fig. S9 TEM images and TEM–EDS maps of (a) SMO-GE1, (b) SMO-GE2, (c) SMO-GE3, and (d) SMO-RS.



**Fig. S10** (A) Powder XRD patterns and (B) micro-Raman spectra of (a) SMO-GE1, (b) SMO-GE2, (c) SMO-GE3, and (d) SMO-RS. The Bragg reflections of MnO<sub>2</sub> NS and SnO<sub>2</sub> phases are denoted as stars and circles, respectively.



**Fig. S11** Powder XRD patterns of the carbon-coated derivatives of (a)  $MnO_2$  NS and (b) SMO-GE1. The Bragg reflections of  $Mn_3O_4$ , MnO, and  $SnMn_2O_4$  phases are denoted as squares, circles, and stars, respectively.



**Fig. S12** (A) Galvanostatic charge–discharge potential profiles and (B) capacity retention plots of carbon-coated derivatives of (a)  $MnO_2 NS$  and (b) SMO-GE1.

## References

- 1 H. Wei, J. Ma, B. Li, L. An, J. Kong, P. Yu and D. Xia, *NPG Asia Mater*, 2016, **8**, e255.
- 2 P. Xia, H. B. Lin, W. Q. Tu, X. Q. Chen, X. Cai, X. W. Zheng, M. Q. Xu and W. S. Li, *Electrochim. Acta*, 2016, **198**, 66-76.
- X. Guo, J. Han, L. Zhang, P. Liu, A. Hirata, L. Chen, T. Fujita and M. Chen, *Nanoscale*, 2015, 7, 15111-15116.
- 4 W. Mao, G. Ai, Y. Dai, Y. Fu, Y. Ma, S. Shi, R. Soe, X. Zhang, D. Qu, Z. Tang and V. S. Battaglia, *J. Power Sources*, 2016, **310**, 54-60.
- 5 C. Jiang, C. Yuan, P. Li, H.-g. Wang, Y. Li and Q. Duan, *J. Mater. Chem. A*, 2016, **4**, 7251-7256.
- 6 C. Chae, K. W. Kim, Y. J. Yun, D. Lee, J. Moon, Y. Choi, S. S. Lee, S. Choi and S. Jeong, *ACS Appl. Mater. Interfaces*, 2016, **8**, 11499-11506.
- 7 I.-H. Ko, S.-J. Kim, J. Lim, S.-H. Yu, J. Ahn, J.-K. Lee and Y.-E. Sung, *Electrochim. Acta*, 2016, **187**, 340-347.
- 8 J.-G. Wang, D. Jin, R. Zhou, X. Li, X.-r. Liu, C. Shen, K. Xie, B. Li, F. Kang and B. Wei, *ACS Nano*, 2016, **10**, 6227-6234.
- 9 S.-Z. Huang, J. Jin, Y. Cai, Y. Li, H.-Y. Tan, H.-E. Wang, G. Van Tendeloo and B.-L. Su, *Nanoscale*, 2014, **6**, 6819-6827.
- 10 X.-Y. Fan, Y. Cui, P. Liu, L. Gou, L. Xu and D.-L. Li, *Phys. Chem. Chem. Phys.*, 2016, **18**, 22224-22234.