Nanoscale

ARTICLE

Supplementary Information

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x
www.rsc.org/nanoscale

Energetics and Kinetics of Phase Transition Between 2H and 1T $\mathbf{M o S}_{2}$ Monolayer-a Theoretical Study

S1. Introduction The stability and the boundaries between $\mathbf{2 H}$ and $1 \mathrm{~T}^{\prime}$ phases

In equilibrium, an obvious initial concern is the structure and the lowest ground-state energy of the boundary, which readily yields the thermodynamically optimal shape using the Wulff construction. The stability of the boundaries is evaluated by their formation energy per unit length $\left({ }^{\gamma} b\right)$, using the fitted value based on DFT calculations. ${ }_{b}$ is calculated as follows.
(i) We denote l as the length of the boundary and Δm as the number of S atoms lost to $(\Delta m<0)$ or gained ($\Delta m>0$) from the feedstock. So the formation energy ${ }_{f}$ of a triangular 1T phase inside the 2 H monolayer is
$G_{f}=E+\Delta m \times \mu_{S}-E_{2 H}$
where E and $E_{2 H}$ are the DFT energies of the 2 H monolayer with and without 1 T phase inside, respectively, and μ_{S} is the chemical potential of the S feedstock.
(ii) ${ }_{f}$ can be viewed as contributed by three parts, i.e., the three vertices of the triangle $\left({ }^{\varepsilon} v\right)$, the three boundaries $\left({ }^{\gamma}\right)$, and the 1T phase inside (δ) whose area is $\sqrt{3} l^{2} / 4$.

$$
\begin{equation*}
G_{f}=3 \varepsilon_{v}+3 l \gamma_{b}+\frac{\sqrt{3}}{4} l^{2} \delta \tag{S2}
\end{equation*}
$$

(iii) For each kind of boundaries, we construct several (at least three) structures with different sizes (the number n of honeycombs
 denote the lattice vector of MoS_{2} monolayer (or the Mo-Mo distance) as a. For AC boundaries, we have $l=\sqrt{3} n a-2 a / \sqrt{3}$, while for ZZ boundaries, $l=n a$.
As the boundary length (n) increases, the number of S atoms (Δm) departed from stoichiometry also increases, following a linear relationship (${ }_{1}$ and k_{2} are parameters)
$\Delta m=k_{1} n+k_{2}$
(iv) Combining the equations above, we can get (A, B, and C are fitting parameters)
$E-E_{2 H}=A n^{2}+B n+C$
For AC boundaries,

$$
\begin{gather*}
A=\frac{3 \sqrt{3}}{4} a^{2} \delta \tag{S4}\\
B=3 \sqrt{3} a \gamma_{b}-k_{1} \mu_{S}-\sqrt{3} a^{2} \delta \tag{S5a}\\
C=3 \varepsilon_{v}-k_{2} \mu_{S}-2 \sqrt{3} a \delta+\frac{a^{2} \delta}{\sqrt{3}}
\end{gather*}
$$

For ZZ boundaries,

$$
\begin{gather*}
A=\frac{\sqrt{3}}{4} a^{2} \delta \\
B=3 a \gamma_{b}-k_{1} \mu_{S} \tag{S5b}\\
C=3 \varepsilon_{v}-k_{2} \mu_{S}
\end{gather*}
$$

[^0](v) Then we can finally get the formation energy of the boundaries:
\[

$$
\begin{gather*}
\gamma_{b}(A C)=\frac{B+k_{1} \mu_{S}+\sqrt{3} a^{2} \delta}{3 \sqrt{3} a} \tag{S6a}\\
\gamma_{b}(Z Z)=\frac{B+k_{1} \mu_{S}}{3 a} \tag{S6b}
\end{gather*}
$$
\]

S2. Nucleation of 1T phase inside 2 H phase

Table S1. The parameters fitted from DFT energies $(A, B$, and $C)$ and structures (${ }^{k_{1}}, k_{2}, A^{\prime}, B^{\prime}$, and $\left.C^{\prime}\right)$. δ is in the unit of eV/Å2. $\Delta \mu_{c}$ is in the unit of $\mathrm{eV} / \mathrm{MoS}_{2}$.

	$E-E_{2 H}=A n^{2}+B n+C$			δ	$\Delta m=k_{1} n+k_{2}$		$N_{1 T}=A^{\prime} n^{2}+B^{\prime} n+C^{\prime}$			$\Delta \mu_{c}$
	A	B	C		k_{1}	k_{2}	A^{\prime}	B^{\prime}	C^{\prime}	
ZZ-Mo\|-	0.287	5.731	1.911	0.065	1	0	0.5	-0.5	0	0.573
ZZ-Mo\|+	0.195	-4.524	29.405	0.044	-2	12	0.5	-0.5	-9	0.390
ZZ-S\|-	0.237	13.771	-21.793	0.054	2	-3	0.5	-0.5	-9	0.474
ZZ-S\|+	0.226	-1.401	14.678	0.051	-1	7	0.5	-0.5	-9	0.452
AC\|-	0.758	18.820	-5.006	0.057	3	-1	1.5	-1.5	1	0.505
AC\|+	0.842	5.692	7.549	0.063	0	2	1.5	1.5	-2	0.561

The change in Gibbs free energy ${ }^{G} f$ as a function of the nucleus size n or ${ }^{N}{ }^{1 T}$ dominates the behavior of nucleation. Then from G_{f} in Eq. (3) in the main text, we can furthermore analyze how a 1 T phase nucleates inside a 2 H lattice. Now we focus on the nuclei with $\mathrm{ZZ}-\mathrm{Mol}$ - and $\mathrm{ZZ}-\mathrm{S} \mid+$ boundaries, which has lower formation energy and then higher chance to present. Since the number of S atoms hoped to 1 T phase $\left({ }^{\left(N_{1 T}\right)}\right.$) has a polynomial relationship with $n\left(N_{1 T}=A n^{2}+B n+C\right.$, all the coefficients listed in Table S1.), we can rewrite ${ }_{f}$ in Eq. (3) and (S4) as

$$
\begin{equation*}
G_{f}=(A-A \Delta \mu) n^{2}+\left(B-B \Delta \mu+k_{1} \mu_{S}\right) n+\left(C-C^{\prime} \Delta \mu+k_{2} \mu_{S}\right) \tag{S7}
\end{equation*}
$$

and $N_{1 T}$ is the number of the top-layer S atoms in the 1 T phase which is proportional to the area of the 1 T phase in the 2 H lattice and represents the size of the 1 T phase. $\Delta \mu$ is the chemical potential difference between 1 T and 2 H phases.

In eq.(3), $G_{f}=E+\Delta m \times \mu_{S}-E_{2 H}-N_{1 T} \Delta \mu$, the term $-N_{1 T} \Delta \mu$, represents the formation energy drop of the nucleated $1 \mathrm{~T}^{\prime}$ phase as a result of doping or charge transfer. It will affect the stability of different boundaries accordingly:

$$
\begin{gather*}
\gamma_{b}(A C)=\frac{B-B^{\prime} \Delta \mu+k_{1} \mu_{S}+\sqrt{3} a^{2} \delta}{3 \sqrt{3} a} \tag{S8a}\\
\gamma_{b}(Z Z)=\frac{B-B^{\prime} \Delta \mu+k_{1} \mu_{S}}{3 a} \tag{S8b}
\end{gather*}
$$

Note that the parameter B^{\prime} is the same for ZZ boundaries as shown in Table S1, therefore, the driving force $\Delta \mu$ will not affect the relative stability between ZZ boundaries.

The nucleus size and nucleation barrier $\left(n^{*}, G^{*}\right)$, are defined as the maximum of the $G_{f}(n)$ curve at a given $\Delta \mu$ and μ_{S}. Following this definition, we can easily determine G^{*} and n^{*} as a function of $\Delta \mu$ at a given μ_{S}, through $\left.\frac{\partial G}{\partial n}\right|_{n=n^{*}}=0$, and $\left.\frac{\partial^{2} G}{\partial n^{2}}\right|_{n=n^{*}}<0$

$$
\begin{align*}
& n^{*}=\frac{B-B^{\prime} \Delta \mu+k_{1} \mu_{S}}{2\left(A^{\prime} \Delta \mu-A\right)}, \Delta \mu>\Delta \mu_{c}=\frac{A}{A^{\prime}} \\
& G^{*}=\frac{\left(B-B^{\prime} \Delta \mu+k_{1} \mu_{S}\right)^{2}}{4\left(A^{\prime} \Delta \mu-A\right)}+\left(C-C^{\prime} \Delta \mu+k_{2} \mu_{S}\right) \tag{S9}
\end{align*}
$$

Figure S1. The step-flow model at the ZZ-Mol-boundary. The migrated S atoms in both rows $(i, j)=(0,0),(2,0),(2,2),(3,3)$, $(4,4)$ and $(6,6)$ respectively. 2×2 supercells are used in all figures to show the structures clearly.

Figure S2. The step-flow model at the ZZ-Mo|+ boundary. The migrated S atoms in both rows $(i, j)=(0,0),(2,1),(3,2),(4,3)$, $(5,4),(5,5)$ and $(6,6)$, respectively.

Figure S3. The step-flow model at the ZZ-S $\mid+$ boundary. The migrated S atoms in both rows $(i, j)=(0,0),(2,1),(2,2),(3,2),(4,3),(5,4)$ and $(6,6)$ respectively.

[^0]: a. Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong

 China.
 E-mail: feng.ding@polyu.edu.hk

