Nanoscale

ARTICLE

Supplementary Information

Received 00th January 20xx, Accepted 00th January 20xx	Energetics and Kinetics of Phase Transition Between 2H and 1T
DOI: 10.1039/x0xx00000x	MoS ₂ Monolayer—a Theoretical Study
www.rsc.org/nanoscale	Wen Zhao ^a and Feng Ding ^a *

S1. Introduction The stability and the boundaries between 2H and 1T' phases

In equilibrium, an obvious initial concern is the structure and the lowest ground-state energy of the boundary, which readily yields the thermodynamically optimal shape using the Wulff construction. The stability of the boundaries is evaluated by their formation energy per unit length (γ_b), using the fitted value based on DFT calculations. γ_b is calculated as follows.

We denote l as the length of the boundary and Δm as the number of S atoms lost to ($\Delta m < 0$) or gained ($\Delta m > 0$) from the feedstock. So the formation energy ${}^{G_{f}}$ of a triangular 1T phase inside the 2H monolayer is

 $G_f = E + \Delta m \times \mu_S - E_{2H}$ (S1) where E and E_{2H} are the DFT energies of the 2H monolayer with and without 1T phase inside, respectively, and μ_S is the

chemical potential of the S feedstock. G_f can be viewed as contributed by three parts, i.e., the three vertices of the triangle (ε_v), the three boundaries (γ_b), and the

(ii) 1T phase inside (δ) whose area is $\sqrt{3l^2/4}$.

$$G_f = 3\varepsilon_v + 3l\gamma_b + \frac{\sqrt{3}}{4}l^2\delta \tag{S2}$$

(iii) For each kind of boundaries, we construct several (at least three) structures with different sizes (the number n of honeycombs along one side, l = l(n)) and calculate their corresponding E_f , then we can fit those value and obtain γ_b and δ . In detail, we denote the lattice vector of MoS₂ monolayer (or the Mo-Mo distance) as a. For AC boundaries, we have $l = \sqrt{3}na - 2a/\sqrt{3}$, while for ZZ boundaries, l = na.

As the boundary length $\binom{n}{k}$ increases, the number of S atoms (Δm) departed from stoichiometry also increases, following a linear relationship $\binom{k_1}{k}$ and $\binom{k_2}{k}$ are parameters) (S3)

 $\Delta m = k_1 n + k_2$

(iv) Combining the equations above, we can get (A, B, and C are fitting parameters) $E - E_{2H} = An^2 + Bn + C$

С

For AC boundaries,

$$A = \frac{3\sqrt{3}}{4}a^{2}\delta$$

$$B = 3\sqrt{3}a\gamma_{b} - k_{1}\mu_{s} - \sqrt{3}a^{2}\delta$$

$$C = 3\varepsilon_{v} - k_{2}\mu_{s} - 2\sqrt{3}a\delta + \frac{a^{2}\delta}{\sqrt{3}}$$
(S5a)

For ZZ boundaries,

$$A = \frac{\sqrt{3}}{4}a^{2}\delta$$

$$B = 3a\gamma_{b} - k_{1}\mu_{s}$$

$$C = 3\varepsilon_{v} - k_{2}\mu_{s}$$
(S5b)

^{a.} Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, China.

E-mail: feng.ding@polyu.edu.hk

(S4)

ARTICLE

(v) Then we can finally get the formation energy of the boundaries:

$$\gamma_b(AC) = \frac{B + k_1 \mu_S + \sqrt{3}a^2 \delta}{3\sqrt{3}a}$$

$$\gamma_b(ZZ) = \frac{B + k_1 \mu_S}{3a}$$
(S6b)

S2. Nucleation of 1T phase inside 2H phase

Table S1. The parameters fitted from DFT energies (A , B , and C) and structures (k_1 , k_2 , A ', B ', and C '). $^{\delta}$ is in the unit of eV/Å². $^{\Delta\mu_c}$ is in the unit of eV/MoS_2 .

	$E - E_{2H} = An^2 + Bn + C$			8	$\Delta m = k_1 n + k_2$		$N_{1T} =$	$N_{1T} = A'n^2 + B'n + C'$		
	Α	В	С	. 0	k_1	k ₂	<i>A</i> '	<i>B</i> '	С'	_ <i>_p</i>
ZZ-Mo -	0.287	5.731	1.911	0.065	1	0	0.5	-0.5	0	0.573
ZZ-Mo +	0.195	-4.524	29.405	0.044	-2	12	0.5	-0.5	-9	0.390
ZZ-S -	0.237	13.771	-21.793	0.054	2	-3	0.5	-0.5	-9	0.474
ZZ-S +	0.226	-1.401	14.678	0.051	-1	7	0.5	-0.5	-9	0.452
AC -	0.758	18.820	-5.006	0.057	3	-1	1.5	-1.5	1	0.505
AC +	0.842	5.692	7.549	0.063	0	2	1.5	1.5	-2	0.561

The change in Gibbs free energy ${}^{U}f$ as a function of the nucleus size n or ${}^{N}1^{T}$ dominates the behavior of nucleation. Then from ^Gf in Eq. (3) in the main text, we can furthermore analyze how a 1T phase nucleates inside a 2H lattice. Now we focus on the nuclei with ZZ-Mo|- and ZZ-S|+ boundaries, which has lower formation energy and then higher chance to present. Since the number of S atoms hoped to 1T phase $\binom{N_{1T}}{1}$ has a polynomial relationship with $\binom{N_{1T}}{1} = A n^2 + B n + C$, all the coefficients listed in Table S1.), we can rewrite $\binom{G}{f}$ in Eq. (3) and (S4) as

$$G_f = (A - A\Delta\mu)n^2 + (B - B\Delta\mu + k_1\mu_S)n + (C - C\Delta\mu + k_2\mu_S)$$
(S7)

and N_{1T} is the number of the top-layer S atoms in the 1T phase which is proportional to the area of the 1T phase in the 2H lattice and represents the size of the 1T phase. $\Delta \mu$ is the chemical potential difference between 1T and 2H phases. In eq.(3), $G_f = E + \Delta m \times \mu_S - E_{2H} - N_{1T}\Delta \mu$, the term $N_{1T}\Delta \mu$, represents the formation energy drop of the nucleated 1T'

phase as a result of doping or charge transfer. It will affect the stability of different boundaries accordingly:

$$\gamma_b(AC) = \frac{B - B'\Delta\mu + k_1\mu_S + \sqrt{3}a^2\delta}{3\sqrt{3}a}$$
(S8a)

$$\gamma_b(ZZ) = \frac{B - B'\Delta\mu + k_1\mu_S}{3a}$$
(S8b)

Note that the parameter B' is the same for ZZ boundaries as shown in Table S1, therefore, the driving force $\Delta\mu$ will not affect the relative stability between ZZ boundaries.

The nucleus size and nucleation barrier (n^* , G^*), are defined as the maximum of the $G_f(n)$ curve at a given $\Delta \mu$ and μ_s . Following this definition, we can easily determine G^* and n^* as a function of $\Delta \mu$ at a given μ_S , through $\frac{\partial a}{\partial n}\Big|_{n=n^*} = 0$

$$n^{*} = \frac{B - B'\Delta\mu + k_{1}\mu_{S}}{2(A'\Delta\mu - A)}, \Delta\mu > \Delta\mu_{c} = \frac{A}{A'}$$

$$G^{*} = \frac{\left(B - B'\Delta\mu + k_{1}\mu_{S}\right)^{2}}{4(A'\Delta\mu - A)} + \left(C - C'\Delta\mu + k_{2}\mu_{S}\right)$$
(S9)

 $\partial^2 G$

Nanoscale

Figure S1. The step-flow model at the ZZ-Mo|- boundary. The migrated S atoms in both rows (i,j) = (0,0), (2,0), (2,2), (3,3), (4,4) and (6,6) respectively. 2×2 supercells are used in all figures to show the structures clearly.

Figure S2. The step-flow model at the ZZ-Mo|+ boundary. The migrated S atoms in both rows (i,j) = (0,0), (2,1), (3,2), (4,3), (5,4), (5,5) and (6,6), respectively.

Figure S3. The step-flow model at the ZZ-S|+ boundary. The migrated S atoms in both rows (i,j) = (0,0), (2,1), (2,2), (3,2), (4,3), (5,4) and (6,6) respectively.