Supporting Information

Mesoporous TiO₂@N-doped Carbon Composite Nanospheres Synthesized by Direct Carbonization of Surfactants after Sol-gel Process for Superior Lithium Storage

Hongwei Zhu^{a†}, Yunke Jing^{a†}, Manas Pal^a, Yupu Liu^a, Yang Liu^a, Jinxiu Wang^a, Fan Zhang^{a*}, Dongyuan Zhao^{a*}

^a Laboratory of Advanced Materials and Department of Chemistry, *i*ChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.

*E-mail: dyzhao@fudan.edu.cn

Figure S1. SEM image of the amorphous TiO₂ nanospheres synthesized via double surfactant assisted assembly sol-gel process.

Figure S2. TEM image of the amorphous TiO₂ nanosphere synthesized via double surfactant assisted assembly sol-gel process.

Figure S3. FTIR spectrum of the amorphous TiO₂ nanospheres synthesized via double surfactant assisted assembly sol-gel process.

Figure S4.Monodisperse amorphous TiO₂ nanospheres with different diameter size synthesized via double surfactant assisted assembly sol-gel process(a,150 nm; b,250 nm).

Figure S5. The energy dispersed X-ray spectrum (EDS) of the TiO₂@N-doped carbon composite nanospheres synthesized via double surfactant assisted assembly sol-gel process followed by sequential carbonization of surfactants in N₂ atmosphere.

Figure S6. The high-resolution XPS spectra of N1s in $TiO_2@N$ -doped carbon composite nanospheres synthesized via double surfactant assisted assembly sol-gel process followed by sequential carbonization of surfactants in N₂ atmosphere.

Figure S7. Raman spectrum of the mesoporous TiO_2 nanospheres obtained through solvothermal treatment followed by calcination in air at 700 °C.

Figure S8. TG curve of the $TiO_2@N$ -doped carbon composite nanospheres synthesized via double surfactant assisted assembly sol-gel process followed by sequential carbonization of surfactants in N₂ atmosphere.

Figure S9. Nitrogen sorption isotherms of the mesoprous TiO_2 nanospheres obtained obtained through solvothermal treatment followed by calcination in air at 700 °C.

Figure S10. (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution curves of the mesoporous $TiO_2@N$ -doped carbon composite nanospheres after 200 cycles.