## A New Method for Defect-Rich Graphene Nanoribbons/Onion-Like Carbon@Co Nanoparticles Hybrids as an Excellent Oxygen Catalyst

Wenxiu Yang,<sup>a,c</sup> Lulu Chen,<sup>a,c</sup> Xiangjian Liu,<sup>a,c</sup> Jianbo Jia<sup>a\*</sup> and Shaojun Guo<sup>b\*</sup>

<sup>a</sup> State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. E-mail: jbjia@ciac.ac.cn

<sup>b</sup> Department of Materials Science & Engineering, & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China. E-mail: guosj@pku.edu.cn

<sup>c</sup> University of Chinese Academy of Sciences, Beijing 100049, China

## **Figures**



Fig. S1 TEM image of C@Co-NCNT.



Fig. S2 SEM images of (a, b) C@Co-NCNT and (c, d) C@Co-NGR at different magnifications.



Fig. S3 HRTEM image of C@Co-NGR.



Fig. S4 HRTEM image of C@Co-NCNT.



Fig. S5 XRD pattern of the commercial NCNT.



Fig. S6 EDAX spectrum of C@Co-NGR.



Fig. S7 XPS spectrum of C@Co-NGR and C@Co-NCNT.



Fig. S8 TGA of C@Co-NGR was conducted at O2 atmosphere from 25 to 900 °C with a heating

rate 10 °C /min.



Fig. S9 N<sub>2</sub> adsorption/desorption isotherm curves of the resultant C@Co-NGR, C@Co-NCNT,

and NCNT.



Fig. S10 Chronocoulometric curves of C@Co-NGR, C@Co-NCNT, and NCNT in 1.0 mM

K<sub>3</sub>Fe(CN)<sub>6</sub> solution containing 2.0 M KCl.



Fig. S11 CVs of C@Co-NGR in 0.50 M H<sub>2</sub>SO<sub>4</sub> at different scan rates of 1, 2, 4, 6, 8, 10, 20, 60,

80, and 100 mV s<sup>-1</sup>, respectively.



Fig. S12 CVs of (a) C@Co-NCNT and (b) commercial NCNT in 0.50 M  $H_2SO_4$  at different scan rates of 1, 2, 4, 6, 8, 10, 20, 60, 80, and 100 mV s<sup>-1</sup>, respectively.



Fig. S13 High-resolution C 1s XPS spectrum for the resultant C@Co-NCNT.



Fig. S14 TEM images of (a) C@Co-NGR-NH<sub>4</sub>Cl, (b) C@Co-NGR-NH<sub>3</sub>•H<sub>2</sub>O, (c) C@Co-NGR-HCl, (d) C@Co-NGR-HClO<sub>4</sub>, and (e) C@Co-NGR-Co(NO<sub>3</sub>)<sub>3</sub>.



Fig. S15 TEM images of (a) C@Co-NGR-0, (b) C@Co-NGR-300, (c) C@Co-NGR-500, and (d) C@Co-NGR-800.



**Fig. S16** LSV curves of different materials for ORR in O<sub>2</sub>-saturated 0.10 M KOH. Scan rate is 5 mV/s and rotation rate is 1600 rpm.



Fig. S17 LSV curves of different materials for ORR in  $O_2$ -saturated 0.10 M KOH. Scan rate is 5 mV/s and rotation rate is 1600 rpm.



Fig. S18 LSV curves of C@Co-NGR with different loading amount (X=800, 900, 1000, 1100, 1200  $\mu$ g cm<sup>-2</sup>) for ORR in O<sub>2</sub>-saturated 0.10 M KOH. Scan rate is 5 mV/s and rotation rate is 1600 rpm.



**Fig. S19** LSV curves of commercial Pt/C for ORR in  $O_2$ -saturated 0.10 M KOH before and after 3000 cycles. (f) CVs of the commercial Pt/C in  $O_2$ -saturated 0.10 M KOH without and with 1.0 M CH<sub>3</sub>OH at a scan rate of 50 mV s<sup>-1</sup>.

| Samples            | <b>BET surface</b>                     | $I_D/I_G$ | ECASA              | ΔE <sub>p</sub> | C <sub>dl</sub>        | η(mV vs RHE) at        | Tafel slope             | $\mathbf{J}_0$         |
|--------------------|----------------------------------------|-----------|--------------------|-----------------|------------------------|------------------------|-------------------------|------------------------|
|                    | area (m <sup>2</sup> g <sup>-1</sup> ) |           | (cm <sup>2</sup> ) | (mV)            | (mF cm <sup>-2</sup> ) | 10 mA cm <sup>-2</sup> | (mV dec <sup>-1</sup> ) | (mA cm <sup>-2</sup> ) |
| C@Co-NGR           | 343.2                                  | 1.01      | 3.30               | 70              | 8.06                   | 38                     | 34.5                    | 0.83                   |
| C@Co-NCNT          | 204.8                                  | 0.88      | 2.18               | 90              | 5.68                   | 149                    | 46.1                    | 0.21                   |
| Commercial<br>NCNT | 45.3                                   | 0.97      | 0.576              | 83              | 2.98                   | -                      | -                       | -                      |

Table S1 Summary of the properties of the resulting materials.

Table S2 Distribution of C species obtained from the de-convolution of the C1s peaks by XPS

|           | C-C(sp <sup>2</sup> )/% | C(sp <sup>3</sup> )/% | C-N/C=O/% | π-π*/% | sp <sup>3</sup> /sp <sup>2</sup> (ratio) |
|-----------|-------------------------|-----------------------|-----------|--------|------------------------------------------|
| C@Co-NCNT | 53.05                   | 7.578                 | 15.9      | 23.45  | 0.14                                     |
| C@Co-NGR  | 74.35                   | 15.15                 | 4.67      | 3.69   | 0.21                                     |

Table S3 Comparisons of HER, OER, and ORR performances for C@Co-NGR with other non-precious metal carbon electrocatalysts.

| Catalysts                              | ORR                    |                                                     | OER                    |                      | Reference |
|----------------------------------------|------------------------|-----------------------------------------------------|------------------------|----------------------|-----------|
|                                        | E <sup>b</sup> onset/V | $\mathrm{E}^{\mathrm{b}}_{\mathrm{1/2}}/\mathrm{V}$ | E <sup>a</sup> onset/V | η <sup>a</sup> at 10 | S         |
|                                        |                        |                                                     |                        | mA/cm <sup>2</sup>   |           |
|                                        |                        |                                                     |                        | (mV)                 |           |
| Fe-derived NCNT                        | 0.89                   | 0.71                                                |                        |                      | 1         |
| pPMF                                   | 0.973                  | 0.879                                               |                        |                      | 2         |
| G/CNT/Co                               | 0.95                   | 0.86                                                |                        |                      | 3         |
| BCN-FNHs                               | -                      | 0.861                                               |                        |                      | 4         |
| Co@N-CNTs-m                            | 0.929                  | 0.849                                               |                        |                      | 5         |
| Co-C@NWCs                              | 0.939                  | 0.83                                                |                        |                      | 6         |
| Co@Co <sub>3</sub> O <sub>4</sub> @PPD | ~0.864                 | ~0.794                                              |                        |                      | 7         |
| HDPC                                   | 0.95                   | 0.79                                                |                        |                      | 8         |
| FeNi@NC                                |                        |                                                     | 1.44                   | 280                  | 9         |
| Co <sub>3</sub> O <sub>4</sub> C-NA    |                        |                                                     | 1.47                   | 290                  | 10        |
| Co <sub>3</sub> O <sub>4</sub> -HS     |                        |                                                     |                        | 405                  | 11        |
| $Fe_xCo_{(1-x)}$ -N/PC                 |                        | 0.812                                               |                        | 405                  | 12        |
| Co-MOF@CNTs (5                         | 0.91                   | 0.82                                                |                        | 340                  | 13        |
| wt%)                                   |                        |                                                     |                        |                      |           |
| CoO@N/S-CNF                            | 0.84                   | 0.722                                               |                        | 320                  | 14        |
| Со-N-С                                 |                        | 0.8                                                 |                        | 310                  | 15        |

| Co/NC                                |       | 0.83  |      | 460 | 16        |
|--------------------------------------|-------|-------|------|-----|-----------|
| Co <sub>3</sub> O <sub>4</sub> /NRGO | 0.92  | 0.83  |      | 420 | 17        |
| C@Co-NGR                             | 0.910 | 0.830 | 1.49 | 410 | This work |

E<sup>b</sup>: potential in basic solution; E<sup>a</sup>: potential in acidic solution

pPMF: porous bamboo-like carbon nanotube/Fe<sub>3</sub>C nanoparticles

BCN-FNHs: bamboo-like carbon nanotube (b-CNT)/Fe<sub>3</sub>C nanoparticle (NP) hybrids

Co@N-CNTs-m: Co nanoparticle-encapsulated N-doped carbon nanotube

HDPC: heteroatom (N, P, Fe) ternary-doped, porous carbons

FeNi@NC: single layer graphene encapsulating FeNi

Co<sub>3</sub>O<sub>4</sub>C-NA: Co<sub>3</sub>O<sub>4</sub>-carbon porous nanowire arrays

Co<sub>3</sub>O<sub>4</sub>-HS: Co3O4 hollow spheres

**CoO@N/S-CNF:** CoO nanoparticles into nitrogen and sulfur co-doped carbon nanofiber networks  $Co_3O_4/NRGO: Co_3O_4/N$ -doped reduced graphene oxide

## Reference

- 1. X. Wang, Q. Li, H. Pan, Y. Lin, Y. Ke, H. Sheng, M. T. Swihart and G. Wu, *Nanoscale*, 2015, 7, 20290-20298.
- 2. W. Yang, X. Yue, X. Liu, L. Chen, J. Jia and S. Guo, Nanoscale, 2015, 8, 959-964.
- 3. V. Vij, J. N. Tiwari and K. S. Kim, ACS Appl. Mater. Inter., 2016, 8, 16045-16052.
- 4. W. Yang, X. Liu, X. Yue, J. Jia and S. Guo, J. Am. Chem. Soc., 2015, 137, 1436-1439.
- S. L. Zhang, Y. Zhang, W. J. Jiang, X. Liu, S. L. Xu, R. J. Huo, F. Z. Zhang and J. S. Hu, *Carbon*, 2016, **107**, 162-170.
- 6. Y. Li, F. Cheng, J. Zhang, Z. Chen, Q. Xu and S. Guo, *Small*, 2016, **12**, 2839-2845.
- Z. Wang, B. Li, X. Ge, F. W. Goh, X. Zhang, G. Du, D. Wuu, Z. Liu, T. S. Andy Hor, H. Zhang and Y. Zong, *Small*, 2016, 12, 2580-2587.
- 8. Z. Guo, Z. Xiao, G. Ren, G. Xiao, Y. Zhu, L. Dai and L. Jiang, Nano Res., 2016, 9, 1244-1255.
- 9. X. Cui, P. Ren, D. Deng, J. Deng and X. Bao, Energ. Environ. Sci., 2016, 9, 123-129.
- 10. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- 11. Y. Chuan Tan and H. Chun Zeng, Chem. Commun., 2016, 52, 11591-11594.
- 12. M. Li, T. T. Liu, L. Q. Fan, X. J. Bo and L. P. Guo, J. Alloy. Compd., 2016, 686, 467-478.
- 13. Y. Fang, X. Li, F. Li, X. Lin, M. Tian, X. Long, X. An, Y. Fu, J. Jin and J. Ma, *J. Power Sources*, 2016, **326**, 50-59.
- T. Liu, Y. F. Guo, Y. M. Yan, F. Wang, C. Deng, D. Rooney and K. N. Sun, *Carbon*, 2016, 106, 84-92.
- F. L. Meng, H. X. Zhong, D. Bao, J. M. Yan and X. B. Zhang, J. Am. Chem. Soc., 2016, 138, 10226-10231.
- A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, *Angew. Chem. Int. Edit.*, 2016, 55, 4087-4091.
- 17. K. Kumar, C. Canaff, J. Rousseau, S. Arrii-Clacens, T. W. Napporn, A. Habrioux and K. B. Kokoh, *J. Phys. Chem. C*, 2016, **120**, 7949-7958.