## Electronic Supplementary Information Novel Quantum Spin Hall Insulators in Two-dimensional Hydrogenated Molybdenum and Tungsten Dinitride MN<sub>2</sub>H<sub>2</sub> (M = Mo, W) with High Stability

Peng-Fei Liu,<sup>a,c</sup> Liujiang Zhou,<sup>\*,b</sup> Thomas Frauenheim,<sup>b</sup> Li-Ming Wu<sup>\*,a</sup>

<sup>a</sup>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's

Republic of China

<sup>b</sup>Bremen Center for Computational Materials Science, University of Bremen, Am

Falturm 1, 28359 Bremen, Germany

<sup>c</sup>University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China



**Figure S1.** The phonon spectra and projected phonon density of states (PhDOS) for (a) g-MoN<sub>2</sub>H<sub>2</sub> and (b) g-WN<sub>2</sub>H<sub>2</sub> monolayers.



Figure S2. The phonon spectra for (a) g-MoN<sub>2</sub> and (b) g-WN<sub>2</sub> monolayers.



**Figure S3.** The top views of monolayers after the *ab-initio* molecular dynamics simulation: (a) 500 K, (b) 1000 K and (c) 1500 K for g-MoN<sub>2</sub>H<sub>2</sub> monolayer; (d) 500 K, (e) 1000 K and (f) 1500 K for g-WN<sub>2</sub>H<sub>2</sub> monolayer.



**Figure S4.** Energy fluctuations with respect to time in *AIMD* simulations at 500 K, 1000 K and 1500K for the (a) g-MoN<sub>2</sub>H<sub>2</sub> and (b) g-WN<sub>2</sub>H<sub>2</sub> monolayers, respectively.



Figure S5. The zoom-in band structures for (a) g-MoN<sub>2</sub>H<sub>2</sub> and (b) g-WN<sub>2</sub>H<sub>2</sub> monolayers with SOC.



Figure S6. The band structures for (a) g-MoN<sub>2</sub>H<sub>2</sub> and (b) g-WN<sub>2</sub>H<sub>2</sub> monolayers based on PBE and HSE06.



**Figure S7.** The parities of fifty-four occupied bands at  $\Gamma$  (red color) and M (black color) points for g-MoN<sub>2</sub>H<sub>2</sub> and g-WN<sub>2</sub>H<sub>2</sub> sheets. The total number of +1 (-1) at  $\Gamma$  point is twenty-eight (twenty-six), while twenty-seven (twenty-seven) for M point. So it yields that the product of  $\Gamma$  and M points are + 1 and – 1 for g-MoN<sub>2</sub>H<sub>2</sub> and g-WN<sub>2</sub>H<sub>2</sub> sheets.



**Figure S8.** (a) Selected orbital-resolved band structures for g-WN<sub>2</sub>H<sub>2</sub> monolayers under strain -8% and -6%. The red hexagonal dots represent the contributions from the W  $d_{z2}$  atomic orbitals; the blue hexagonal dots represent the contribution from W  $d_{xy,x2-y2}$ , atomic orbitals. (b) Schematic illustration of the band evolution from the atomic orbitals  $d_{z2}$  and  $d_{xy,x2-y2}$ , of the W atom around the Fermi level at the  $\Gamma$  point for g-WN<sub>2</sub>H<sub>2</sub> monolayer. (c) Zoom-in orbital-resolved band structures for g-WN<sub>2</sub>H<sub>2</sub> monolayers with and without SOC. Parity values are presented near the various orbitals.

**Table S1.** The contributions of the five *d* orbitals to the VBM and CBM based on PBE and HSE06 for g-MN<sub>2</sub>H<sub>2</sub> sheets.

| Comp.                             | $d_{xy}$ (HSE06/PBE) | $d_{\rm yz}$ | $d_{z2}$ (HSE06/PBE) | $d_{\rm xz}$ | $d_{x2-y2}$ (HSE06/PBE) | Total (HSE06/PBE) |     |
|-----------------------------------|----------------------|--------------|----------------------|--------------|-------------------------|-------------------|-----|
| g-MoN <sub>2</sub> H <sub>2</sub> | 0.055/0.062          | 0            | 0.645/0.618          | 0            | 0.056/0.063             | 0.855/0.854       | CBM |
|                                   | 0.056/0.063          | 0            | 0.645/0.618          | 0            | 0.055/0.062             | 0.855/0.854       | VBM |
| $g-WN_2H_2$                       | 0.055/0.058          | 0            | 0.613/0.612          | 0            | 0.055/0.060             | 0.835/0.829       | CBM |
|                                   | 0.055/0.060          | 0            | 0.613/0.612          | 0            | 0.055/0.058             | 0.835/0.829       | VBM |