Supporting Information

Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites

Xueqin Li, ^{a, b} Changlong Hao, ^b Bochong Tang, ^b Yue Wang, ^{b, c} Mei Liu, ^{b, c} Yuanwei Wang, ^a Yihua Zhu, ^{a,*} Chenguang Lu, ^{b,*} Zhiyong Tang^b

^{a.} Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P.R.China.

^{b.} CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P.R.China, and University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, P.R.China 100049.

^{c.} China University of Petroleum, Changping, Beijing 102249, P.R.China.

*Corresponding author. E-mail: yhzhu@ecust.edu.cn (Prof. Y. H. Zhu) and LUCG@nanoctr.cn (Prof. C. G. Lu).

Sample	Size of ZIF-8	$Zn(NO_3)_2$ ·6H ₂ O	2-MeIM	Methanol	
	(nm)	(mg)	(mg)	(mL)	
MWCNT/ZIF-8-	50	505	(5)	0(
S	50	595	030	90	
MWCNT/ZIF-8-	200	208	656	06	
М	200	298	030	96	
MWCNT/ZIF-8-	500	1100	(5)	06	
L	500	1190	030	90	

Table S1. Parameters used in the preparation of MWCNT/ZIF-8 with different sizes.

Fig. S1 The XRD results of MWCNT/ZIF-8-M/S, MWCNT/ZIF-8-Mix and the derived MWCNT/NPC-M/S composites, MWCNT/NPC-Mix.

Fig. S2 TEM images of (a) ZIF-8, (b) NPC-L. (c) SEM image of the MWCNT/NPC-Mix. (d) HRTEM image of MWCNTs.

Fig. S3 The corresponding EDS spectra for MWCNT/NPC-L, the insert table is for the weight and atomic ratio of C, N and O elements.

Fig. S4 Nitrogen adsorption–desorption isotherm and pore size distribution, (a) and (b) MWCNT/NPC-M, (c) and (d) MWCNT/NPC-S, (e) and (f) MWCNT/NPC-Mix.

Fig. S5 Raman spectra of MWCNTs, NPC, and MWCNT/NPC recorded at 633 nm laser excitation.

Table S2. The content of C, N, O in the obtained samples from XPS analysis (at. %)

Sample	С	N	0	Pyridinic-N	Pyrrolic-N	Graphitic-N
NPC-L	85.473	10.193	4.335	65.5	14.9	19.6
MWCNT/NPC- S	84.296	10.969	4.735	56.4	19.6	24
MWCNT/NPC- M	86.399	10.081	3.52	65.9	18.8	15.3
MWCNT/NPC- L	87.054	10.454	2.492	68	9.9	22.1

Fig. S6 Cyclic voltammograms of (a) MWCNT/NPC-L, (b) MWCNT/NPC-M, (c) MWCNT/NPC-S, (d) NPC-L, (e) MWCNT/NPC-Mix, and (f) MWCNTs electrodes at various scan rates in a range from 20 to 200 mV/s. All measurements were conducted in 1.0 M H₂SO₄.

Fig. S7 Galvanostatic charge-discharge curves of (a) MWCNT/NPC-L, (b) MWCNT/NPC-M, (c) MWCNT/NPC-S, (d) NPC-L, (e) MWCNT/NPC-Mix, and (f) MWCNTs electrodes at various current density in a range from 1 to 10 A/g. All measurements were conducted in 1.0 M H₂SO₄.

Fig. S8 (a) Nyquist plots of SSCs of MWCNT/NPC-L, NPC-L, and MWCNTs, the inset showed an expanded view for high-frequency range. **(b)** Variation of the specific capacitance within 2,000 cycles at the current density of 5 A/g.

		~ p • • • • •	r		11 1 40000				
	Specific capacitance (F/g)								
Sample	Scan rate (mV/s)					Current density (A/g)			
	5	50	100	200		2	3	5	10
MWCNTs	85.8	70.8	68.1	65.9		81.5	77.7	74.2	71.5
NPC-L	166.7	120.1	94.9	69.6		157.1	149.3	137.7	118.3
MWCNT/NPC- Mix	155.7	127.4	118.5	100.5		168.7	155	142.7	134.1
MWCNT/NPC- S	192.1	163.1	146.2	119.2		198.6	190	182.8	172.1
MWCNT/NPC- M	222.6	189.5	170.2	138.9		229	220.8	211.4	200
MWCNT/NPC- L	293.4	249.9	237.2	219.5		302.2	279.4	257.2	247.8

Table S3. Specific capacitance at different scan rates and current densities.

Material	Electrolyte	Potential range (V)	Specific capacitance (F/g)	Current density (A/g)	Ref.
MWCNT/NPC-L	1 M H ₂ SO ₄	0.9	302.2 293.4	2 5 mV/s	This work
OMFLC-N	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	1.2	790	1	Ref. 1
HC/KOH/N	$1 \text{ M H}_2 \text{SO}_4$	1.0	492	0.1	Ref. 2
CBC-N	6 M KOH	1.0	238.4	0.5	Ref. 3
PC1000@C	6 M KOH	1.0	225	0.5	Ref. 4
NPC	$1 \text{ M H}_2 \text{SO}_4$	0.9	251	5 mV/s	Ref. 5
NOMC	6 M KOH	1.0	281	0.5	Ref. 6
C-GZ-2	$1 \text{ M H}_2 \text{SO}_4$	1.0	238	1	Ref. 7
ZnO QDs/ carbon/CNTs	1 M Na ₂ SO ₄	1.0	185	0.5	Ref. 8
NPC-800	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.8	238	20 mV/s	Ref. 9
NC@GC	$1 \text{ M H}_2\text{SO}_4$	0.8	270	2	Ref. 10

Table S4. Specific capacitance of various NPC materials using three-electrode cells reported in literatures.

Table S5. Comparison of high performance carbons materials for supercapacitors

Material	S _{BET} (m²/g)	Electrolytes	Current density (A/g)	Specific capacitance (Cs, F/g)	Ref.
MWCNT/NPC-L ³	928.2	$1 M H_2 SO_4$	2	302.2	This work
NPC-L ³	999.7	$1 \text{ M H}_2\text{SO}_4$	2	157.1	This work
C-GZ-2 ²	280.4	1 MH ₂ SO ₄	1	238	Ref. 7
C-ZIF-8 ²	616.5	$1 \text{ M H}_2 \text{SO}_4$	1	~ 45	Ref. 7
CESM-300 ³	221.2	1 MKOH	0.2	297	Ref. 11
AC-KOH ³	1575	1 MKOH	0.2	203	Ref. 11
a-MEGO ²	3100	TEA BF ₄ /AN	0.8	150	Ref. 12
AS-ZC-800 ³	2972	$1 \text{ M H}_2\text{SO}_4$	10 mV/s	211	Ref. 13
S-ZC-800 ³	1955	$1 \text{ M H}_2\text{SO}_4$	10 mV/s	158	Ref. 13
ZC-800 ³	1051	$1 \text{ M H}_2 \text{SO}_4$	10 mV/s	104	Ref. 13

The number in superscript represents the configuration of supercapacitor cell, i.e. 2- or 3- electrode system.

References for Supporting Information

- 1 T. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi, F. Xu and F. Huang, Science, 2015, 350, 1508-1513.
- 2 F. Gao, G. Shao, J. Qu, S. Lv, Y. Li and M. Wu, *Electrochimica*. Acta, 2015, 155, 201-208.
- 3 F. Lai, Y.-E. Miao, L. Zuo, H. Lu, Y. Huang and T. Liu, Small, 2016, 12, 3235-3244.
- 4 M. Jiang, X. Cao, D. Zhu, Y. Duan and J. Zhang, *Electrochimica*. Acta, 2016, 196, 699-707.
- 5 R. R. Salunkhe, Y. Kamachi, N. L. Torad, S. M. Hwang, Z. Sun, S. X. Dou, J. H. Kim and Y. Yamauchi, *J. Mater. Chem. A*, 2014, **2**, 19848-19854.
- 6 G. Shen, X. Sun, H. Zhang, Y. Liu, J. Zhang, A. Meka, L. Zhou and C. Yu, *J. Mater. Chem. A*, 2015, **3**, 24041-24048.
- 7 C. Li, C. Hu, Y. Zhao, L. Song, J. Zhang, R. Huang and L. Qu, Carbon, 2014, 78, 231-242.
- 8 Y. Zhang, B. Lin, J. Wang, J. Tian, Y. Sun, X. Zhang and H. Yang, J. Mater. Chem. A, 2016, 4, 10282-10293.
- 9 N. L. Torad, R. R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C. C. Hu and Y. Yamauchi, *Chemistry*, 2014, **20**, 7895-7900.
- 10 J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura, S. Furukawa and Y. Yamauchi, J. Am. Chem. Soc., 2015, 137, 1572-1580.
- 11 Z. Li, L. Zhang, B. S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B. C. Olsen, C. M. B. Holt and D. Mitlin, *Adv. Energy Mater.*, 2012, 2, 431-437.
- 12 Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz and M. Thommes, *Science*, 2011, **332**, 1537-1541.
- 13 A. J. Amali, J. K. Sun and Q. Xu, Chem. Commun., 2014, 50, 1519-1522.