
1

Supporting Information:

1. Quantum chemistry calculations and the reaction paths
Quantum chemistry calculations of the global-minimum structures  and transition iGM
states of all molecular rotors , , , and , along with their energies and , 1i iTS  11B

13B
15B

19B

normal modes, were accomplished at the PBE0/6-311+G* level of theory, using the 
Gaussian 09 suite of programs.39 The results are in agreement with those of Refs. 15-21. 
The barrier heights for , , , and  at this level are 224.3, 104.5, 454.2, and 6.4 11B

13B
15B

19B

, respectively. The present rotational/pseudo-rotational cyclic reaction path (rpr-1hc cm
CRP) passes through all the global-minimum structures and through all 1 2, , ,GM GM L
transition states  see Fig. 1f. The motion along the reaction path correlates 1,2 2,3, , ,TS TS   

with the corresponding in-plane lowest-frequency normal modes of all  and the iGM
imaginary-frequency normal modes of all ; see Figs. 1g and 1h. All the  , 1i iTS  iGM
configurations are equivalent. In the molecular ground state they are populated, therefore, 
with equal probabilities, as shown in Figs. 2 and 4e-4h. This is a general property, 
irrespective of the definition of the rpr-CRP.

As an example, we now define the rpr-CRP of . According to Fig. 1, the nuclei of 11B

the wheel of  rotate (almost) on a circle, and each nucleus of the outer bearing moves 11B

along equivalent periodic orbits (nearly ellipsoidal). The mean angular velocities of the 
nuclei of the bearing are twice as fast compared to the nuclei of the wheel, that is, they 
run a full cycle around their ellipses when the wheel moves only half a circle. It is 
therefore convenient to define the rotational angle  such that the wheel rotates with 
angular velocity , while each nucleus of the outer bearing moves with mean angular &
velocity . The corresponding nuclear coordinates are2&

(S1a)0 0cos( 2 ),k k kx x a     
(S1b)0 0sin( 2 ),k k ky y b     
(S1c)0,kz 

where  for the outer bearing, and1, ,9k  L

                            (S2a)0 0cos( ),i i ix x R     
                        (S2b)0 0sin( ),i i iy y R     
               (S2c)0,iz 

for the nuclei of the wheel, . According to Fig. 1 we have1,2i 
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                      (S3a)0 ( 1) 40 , 1, ,9k k k    o L

                 (S3b)0 ( 1) 180 , 1,2i i i    o

Thus the rpr-CRP is well described in terms of the rotational angle , ranging from  to  0o

. One can also say that the rpr-CRP is mapped on . The structures of 18 equivalent 360o 
 yield the parameters for the inner circle and for the outer ellipses,iGM

Å, (S4a)0.892R 
Å, (S4b)0.423a 
Å. (S4c)0.159b 

We close this section with a caveat, i.e., the interpretations of the results depends on 
the reference frame. In the laboratory frame, the light compact inner wheel rotates much 
faster than the heavy outer bearing - this is a consequence of the order of magnitude 
difference of the small and large moments of inertia of the molecular wheel and the 
bearing, respectively. For example, if the molecular wheel of  makes a full cycle (11B

) in the laboratory frame, then its bearing counter-rotates by just , i.e. the 360 14
bearing stands almost still (see equations (S9a) and (S9b) for the corresponding moments 
of inertia). In this work, we start by considering rotations of the planar boron clusters in 
the laboratory frame, but then we prefer it to switch to the frame where the inner wheel 
rotates with respect to the outer bearing. Switching frames is ubiquitous in every day's 
life, for example one may view the sun as rotating around the earth, or vice versa.

2. The effective moment of inertia
The Hamiltonian for the one dimensional rpr-CRP model can be written as

(S5)
2 2

2
eff

( ).
2

H V
I





  


h

According to Ref. 22, the effective moment of inertia  can be obtained aseffI

(S6)eff rot pseudo ,I I I 

where

(S7)w b
rot

w b

,I II
I I






is the reduced moment of inertia of the rotating wheel in its bearing (analogous to the 
reduced mass of two particles, e.g., the atoms of a diatomic molecule), and

(S8)2
pseudo p9 2I I  
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accounts for the pseudo-rotation of the nine nuclei of the bearing. The factor  accounts 22
for the fact that the angular velocity of each nucleus of the bearing is twice as fast as the 
wheel.22 Here ,  and  are the moments of inertia of the inner wheel, of the outer wI bI pI
bearing, and of the individual nuclei running along their ellipsoidal orbitals, respectively, 
which amount to

∙Å2 = 17.5 u∙Å2,                                        (S9a)2
w B B2 1.59    I m R m

∙Å2 = 454.6 u∙Å2,                            (S9b)
9

2 2
b B 0 0 B

1
( ) 41.29 



    k k
k

I m x y m

∙Å2 = 1.124 u∙Å2.                               (S9c)2 2
p B B

1 ( ) 0.1021 
2

   I m a b m

The above values are obtained using  and the parameters in equation (S4). B 11.01 um 
Combining equations (S6) to (S9) we have

u∙Å2 = 57.3 u∙Å2.                                (S10)eff (16.85 40.46)I  

Now we introduce an alternative way to the effective moment of inertia . effI
According to Figs. 1a, 1b, 1g, 1h, the motions along the rpr-CRP correlate with the in-
plane lowest-frequency normal mode of each , as well as the imaginary-frequency iGM
normal mode for crossing each . The frequencies of the two modes are, 1i iTS 

                                                              (S11a)-1
low low / 2 148.7 c cm ,    

                                                 (S11b)-1
im im / 2 143.2 c cm ,     i

respectively, at the PBE0/6-311+G* level.

The fact  supports the simple periodic model potentiallow im 

                                                                   (S12)b
1( ) (1 cos(18 )),
2

V V   

with 18 equivalent potential minima. The frequencies  and  are related to the low im
force constants  at the potential minima and  at the potential maxima, respectively. GMk TSk
Calculating the second order derivative of equation (S12),

                                                     (S13a)
2

2 2
GM eff,GM low min2

1| 18 ,
2 b

Vk I V



    


                                           (S13b)
2

2 2
TS eff,TS im max2

1( / ) | 18 .
2 b

Vk I i V



     

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Using the results of equation (S11) and  we obtain-1
b 224.3 hc cm , V

 u∙Å2,                                                               (S14a)eff,GM 55.4I 

 u∙Å2,                                                                           (S14b)eff,TS 59.7I

at the PBE0/6-311+G* level. The mean value is

 u∙Å2,                                                (S15)eff,m eff,GM eff,TS
1 ( ) 57.5
2

I I I  

in very good agreement with the value of  u∙Å2 derived in equation (S10).eff 57.3I 

3. Quantum mechanical calculations
The wave functions  and energies  representing the rotating wheel in the pseudo-( )v  vE
rotating bearing of  are obtained as solutions of the time independent Schrödinger 11B

equation (TISE)

                                                              (S16)v v v( ) ( ) ( ),H E    

with periodic boundary conditions, . Converged results for the 36 states (0) (2 )v v  
with the lowest energies were obtained by expanding the wave function  in terms ( )v 

of 721 periodic basis functions ( )1 e ,  360, 359, , 360.
2




      i k k

The rotational/pseudo-rotational energy spectrum of  displays band structure, with 11B

successive groups of 18 states forming an energy band. In each band, the lowest and 
highest energy levels are non-degenerate, and the remaining 16 energy levels are all 
doubly degenerate, in accord with the quantum mechanical  symmetry of . The 9hD 11B

lowest 36 energy levels (two energy bands) are compiled in Table S1 and illustrated in 
Fig. 2. The zero point energy of 65.4 cm1 is smaller than the value of the harmonic 
approximation at the PBE0 level ( ), due to the anharmonicity of the -1

low0.5 74.3 c cm  
motions along the rpr-CRP.
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Table S1: Quantum numbers and energies of the lowest 36 rotational/pseudo-rotational 
states of 11B

  Quantum number Energy (hc∙cm1)  Quantum number Energy (hc∙cm1)
0 65.4 18 171.0
1 65.5 19 171.6
2 65.5 20 171.6
3 65.7 21 173.1
4 65.7 22 173.1
5 65.9 23 175.6
6 65.9 24 175.6
7 66.3 25 179.0
8 66.3 26 179.0
9 66.6 27 183.1
10 66.6 28 183.1
11 67.0 29 187.5
12 67.0 30 187.5
13 67.3 31 191.9
14 67.3 32 191.9
15 67.5 33 195.4
16 67.5 34 195.4
17 67.5 35 196.7

4. Quantum dynamics simulation
Quantum dynamics simulations of the planar all-boron rotors represent the rotating 
wheels in pseudo-rotating bearings in terms of the time-dependent wave functions 

, which are evaluated as solutions of the time-dependent Schrödinger equation ( , )t 
(TDSE)

                            ,                                              (S17)i ( , ) ( ) ( , )t H t
t
    




h

subject to the initial conditions

                          ,                                            (S18)init( ,0) ( )= ( )v v
v

c      

Equation (S18) expands the initial wave function  in terms of the eigenfunctions init ( ) 
 of the rotor, which have been obtained as results of the TISE (S16), together with ( )v 

the eigenenergies . The solution of the TDSE (S17) then isvE

                                          
.                                                    (S19)/( , )  ( )viE t

v v
v

t c e    h
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Here we evaluate the dynamics of the model rotor  for two different initial 11B

conditions,  and , assuming initial localization in a single init local,0( ) ( )    local,1( ) 
potential well that supports a single global minimum, specifically in its ground (local,0) 
or first excited (local,1) states; the corresponding expansions (S18), (S19) are in terms of 
the eigenfunctions of the lower and upper bands, respectively. These initial states are, of 
course, not eigenstates of the rotors. In other words, they are non-stationary. The 
resulting time evolutions correspond to rotations/pseudo-rotations from the single initial 
global minimum structure say  via the transition states  or  to the iGM , 1i iTS  1,i iTS 

neighboring  or , and from there either to the next neighbouring  or 1iGM  1iGM  2iGM 

, or back to , and so on. This is illustrated by the time-evolutions of the 2iGM  iGM
densities in Figs. 4 and S1,

        
.
                                 

(S 20)2 2( , ) ( ) ( ) ( ) cos[( ) / ]v v v w v w v w
v v w

t c c c E E t       


    h

The initial localized wave functions thus delocalize such that they penetrate from the 
initial potential well into the neighboring ones, then into the next-neighboring ones, and 
so on. At the same time, the populations of the initial potential well decrease, to the 
benefit of populations of the other potential wells. Since the rotation/pseudo-rotation is 
cyclic, the frontier lobes of the spreading wave functions reach again the initial well, after 
some time. Here they may interfere constructively, which corresponds to some re-
population of the initial global minimum structure, or the initial potential. Quantitatively, 
the population of the initial state is calculated (using Dirac notation ) as ( , ) (t)t   

.                           (S 21)
2 4 2 2( ) (0) ( ) cos[( ) / ]v v w v w

v v w
P t t c c c E E t 



     h

A re-population of the initial global minimum structure appears as temporal peak in 
. The phenomenon is well known for other cyclic systems - they may be called ( )P t

"revivals of the initial state"; see e.g. Ref. 37.  Revival patterns in quantum mechanics are 
often quite complex: One typically observes some "partial revivals" before the system 
exhibits a more significant revival at revival time . Here this does not necessarily mean 
a complete revival ( ), but in any case the peak  sticks out of smaller partial ( ) 1P   ( )P 
revivals. In the present case, the time it takes from t = 0 to the time  of the first t 
"significant revival" characterizes the period of rotation/pseudo-rotation of the rotor. The 
period depends, of course, on the initial preparation of the system. Below we shall call 
these periods  and , corresponding to the initial states  and  that are lower upper local 0 ， local 1 ，

expanded in terms of the eigenfunctions of the lower and upper bands, respectively.

The resulting time evolutions  of the populations of the initial global minimum ( )P t
structure prepared in states  and  are shown in Figs. 4 and S1, respectively. local 0 ， local 1 ，

The revival patterns yield the rough estimates of the rotational/pseudo-rotational periods, 
 and . Apparently, excitation of the planar all-boron rotor from lower 127 ps  upper 8ps 

its single initial global minimum structure in the ground state to the first excited state 
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speeds up rotation of the inner wheel in its pseudo-rotating outer bearing, with 
corresponding decrease of the period. This decrease corresponds to the increasing 
spacings of the energy levels of the broader upper band, compared to the narrow lower 
band. Note that this is an intrinsic property of the rotor. Quantum dynamics simulations 
of selective uni-directional rotations/pseudo-rotations driven by external circularly 
polarized IR laser fields, somewhat analogous to the classical trajectory simulations of 
Ref. 21, will be published separately.

Fig. S1. Same as Fig. 4, but for the first excited state.
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