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Methods

Below we summarize the thermodynamic approach for simulating the coupled polar-elastic behavior

of the ferroelectric inclusion embedded in the linear dielectric-elastic medium. Computational

domain of the problem is split into two volumes – a sphere volume ΩFE of the inclusion at the

center of a cube volume ΩM representing the surrounding matrix. The outer bounding surfaces of

the ΩM volume are denoted ∂ΩM, while the surface of the inclusion volume ΩFE is denoted ∂ΩFE.

We assume a coherent interface between the inclusion and outside medium.

The finite element model variants are meshed with tetrahedrons with CUBIT.1 The unstructured
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mesh size for the ferroelectric subdomain is chosen such that there are approximately 2−5 elements

across the domain wall length scale. Outside of the sphere, no such constraint is held, and the mesh

is allowed to coarsen as the radial distance is traversed to the boundary to improve computational

efficiency. The ratio of the coarse boundary mesh size to sphere mesh size is kept relatively fixed

throughout these calculations.

System energies

In a ferroelectric (FE) material, in some volume ΩFE, spontaneous polarization arises at temperatures

below the Curie temperature, TC .2,3 By expanding the free energy density in the order parameters,

one can show that the total free energy of a system, F can be written as

F =

∫
ΩFE

f d3r =

∫
ΩFE

[felastic + fbulk + fwall + felec + fcoupled]d3r (1)

with

felastic ≡
1

2
Cijklεijεkl, (2)

fbulk ≡ αijPiPj + βijkPiPjPk + γijklPiPjPkPl + ωijklmPiPjPkPlPm + δijklmnPiPjPkPlPmPn,

(3)

fwall ≡ Gijkl
∂Pi

∂xj

∂Pk

∂xl
, (4)
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felec ≡ −Pk
∂Φ

∂xk
, (5)

and

fcoupled ≡
1

2
qijklεijPkPl. (6)

Here, P(r) is the polar field arising from ionic distortions on the lattice, εij = 1
2

(∂ui/∂xj + ∂uj/∂xi)

is the elastic strain tensor, u(r) is the displacement field and Φ(r) is the electrostatic potential.

Einstein summation convention is assumed throughout this document for the Cartesian indices.

Linear elastic energy density felastic accounts for linear elastic strain contributions to the total energy,

with Cijkl being the elastic stiffness tensor. fbulk is bulk free energy, with expansion coefficients αij ,

βijk, γijkl and so on determining the preferred magnitude and direction of the FE distortion in the

unit cell below TC . In addition, Gijkl are gradient energy coefficients, and fwall term expresses the

energy contributions arising from local gradients in the polarization density. Electrostatic energy

density felec represents the interaction of the FE polarization with internal and external electric

fields. fcoupled governs the strength of the coupling between elastic strains and ionic distortions,

represented by the electrostrictive tensor qijkl. Note that some works in the literature4,5 combine

felastic and fcoupled into one term. Here, we have chosen to separate them out due to the fact that the

result of the variational differentiation (with respect to P) will only give nonzero results for terms

that explicitly contain P.

Materials parameters

Parameters αij , βijk, γijkl, ωijklm, δijklmn, Gijkl, Cijkl and qijkl ≡ 2CijmnQmnkl, are material

dependent, obey symmetries of the lattice, and in general can be dependent on temperature T .

Group-theoretical methods6,7 can be used to reduce the number of these parameters to a minimum
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by exploiting materials symmetries. In this work, we focus on canonical ferroelectrics PbTiO3

(PT) and BaTiO3 (BT), whose bulk and domain wall energy density expressions have the following

forms:

fbulk = α1

(
P 2

1 + P 2
2 + P 2

3

)
+ α11

(
P 4

1 + P 4
2 + P 4

3

)
+ α12

(
P 2

1P
2
2 + P 2

2P
2
3 + P 2

1P
2
3

)
+ α111

(
P 6

1 + P 6
2 + P 6

3

)
+ α112

[
P 4

1

(
P 2

2 + P 2
3

)
+ P 4

2

(
P 2

1 + P 2
3

)
+ P 4

3

(
P 2

1 + P 2
2

)]
+ α123

(
P 2

1P
2
2P

2
3

)
,

(7)

and

fwall =
1

2
G11

[(
∂Px

∂x

)2

+

(
∂Py

∂y

)2

+

(
∂Pz

∂z

)2
]

(8)

+G12

[
∂Px

∂x

∂Py

∂y
+
∂Py

∂y

∂Pz

∂z
+
∂Px

∂x

∂Pz

∂z

]
+

1

2
G44

[(
∂Px

∂y
+
∂Py

∂x

)2

+

(
∂Py

∂z
+
∂Pz

∂y

)2

+

(
∂Px

∂z
+
∂Pz

∂x

)2
]

+
1

2
G′44

[(
∂Px

∂y
− ∂Py

∂x

)2

+

(
∂Py

∂z
− ∂Pz

∂y

)2

+

(
∂Px

∂z
− ∂Pz

∂x

)2
]
.

For the bulk free energy that describes the energetics of the phase transition, only sixth order

expansions are used, as such expansions are sufficient to reproduce the behavior of both PT and

BT within the temperature range considered here.8 The bulk free energy coefficients for the two

materials are listed in Table 1. The gradient (exchange coupling) free energy coefficients are

presented in Table 2. For PT, the results in the main paper are obtained using PT set I, unless

otherwise noted.

The choice of both PT and BT as FE materials of interest is partly motivated by their distinct
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response to mechanical strains. In this problem, mechanical response arises due to strain transfer

from the outside elastic matrix and self-strain within the inclusion (both of these play an important

role in stabilizing the observed polarization textures). PT displays lower electrostriction but

higher spontaneous polarization at room temperature PPT
s ' 0.75 C/m2 than BT (PBT

s ' 0.26

C/m2). The choice of matrix materials enveloping the inclusion, SrTiO3 (ST), amorphous silica

(a-SiO2), and vacuum is primarily motivated by their dielectric strength (εm = 300, 2.6, and 1

respectively). We assume an isotropic (and linear) dielectric medium. The medium is also treated

as elastic, with the exception of the vacuum case. The elastic stiffness tensor parameters listed in

Table 3 primarily come from Refs. 9–11 and are presented in Voight notation.12 For calculations of

inclusions embedded in the ST matrix, elastic constants were averaged as C11,= C33 = 2µ + λ,

C12 = C13 = λ = 99.7 GPa, and C44 = C66 = µ = 109.6 GPa,9,11 which is a reasonable

experimentally relevant assumption, since ΩM is a much larger volume than the spherical inclusion

and likely not to be single crystal.

Table 1: Ferroelectric material parameters used in this work for PbTiO3 and BaTiO3 at room
temperature, T = 293 K. Elastic stiffness and electrostrictive tensor coefficients are given in
Voight notation.12 Sixth order expansions of the bulk free energy are used for both materials. All
coefficients are given in SI units.

PbTiO3 BaTiO3 Ref.
α1 −7.1× 107 −2.94× 107 3
α11 −7.3× 107 −6.71× 108 -
α12 7.5× 108 3.23 ×108 -
α111 2.6× 108 8.28× 109 -
α112 6.1× 108 4.47 ×109 -
α123 −3.7× 109 4.91× 109 -
εb 10 7.35 13,14
Q11 0.089 0.11 4,15
Q12 -0.026 -0.045 -
Q33 0.034 0.059 -
C11 281 116 9, 11
C12 116 104 -
C33 97 120 -
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Table 2: Different sets of gradient energy parameters, Gijkl, presented in Voigt notation12 for Gij

and G110 in units of 10−10C−2m4N. We utilize three different sets of parameters from the literature
to evaluate how polar properties of PT inclusions are affected by their choice. For BT, only one set
of gradient terms due to Hlinka and collaborators is used.

Gijkl PT set I4,5 PT set II16 PT set III17 BT14

G110 1.73 1.73 1.73 1.0
G11/G110 0.6 1.6 2.0 5.1
G12/G110 0.0 0.0 0.0 0.0
G44/G110 0.3 0.8 1.0 0.2
G′44/G110 0.3 0.8 1.0 0.2

Table 3: Linear dielectric material parameters used in this work for SrTiO3 and a-SiO2 at room
temperature, T = 293 K. Medium dielectric constants are assumed to be isotropic and are given in
units of the relative permittivity. Elastic stiffness tensor coefficients are given in Voight notation12

in units of GPa. Elastic stiffness tensors of the amorphous silica are obtained from averaging data
presented in Ref.10

SrTiO3 a-SiO2 vacuum Ref
C11 319 63 - 10, 9, 11
C12 100 6 - -
C44 110 28 - -
εm/ε0 300 2.6 1 18, 10
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Gradient-flow approach

FERRET 19 is an open-source code-package for simulating ferroelectric nano structures based on

the multi-physics finite element framework MOOSE.20 In contrast to spectral methods4,5,15,17 that

rely on regular parallelepiped meshes, the method utilized here implements a real-space approach

based on irregular unstructured meshes, which allows it to process irregular geometries (using the

LIBMESH 21 library).

Evolution of the polarization field, P, in the inclusion in a linear dielectric is described by the

time-dependent Landau-Ginzburg-Devonshire (TDLGD) equation,

− γ ∂P
∂t

=
δ

δP

∫
ΩFE

d3r f (P) , (9)

where γ is a time-scaling parameter related to domain-wall mobility.22

The variable γ is set to unity in this investigation and, therefore, the TDLGD equation is solved

in an arbitrary scaled time. The is because in real materials, elastic strain usually relaxes much faster

than the polarization,23 we assume that the local displacement field u(r) instantaneously adjusts to

the current state of the polarization field P. This results in the following mechanical equilibrium

condition for the system that must be satisfied at every time step of the evolution of P:

∂

∂xj
[Cijkl (εkl −QijmnPmPn)] = 0 (10)

Furthermore, the evolution of P is also coupled with that of the local (internal) electrostatic potential

Φ by the Poisson equation:

∇ · (εb∇Φ) = ρb. (11)

Here, ρb is bound volume charge that is equal to −∇ · P. Solving Eq. 11 accounts for the long-

range Coulombic interactions within the system, including the potential emergence of the so-called

depolarization field that originates from the presence of unscreened charges on the inclusion surface
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∂ΩFE. Parameter εb, sometimes called the background dielectric constant, represents contributions

from core electrons to the dielectric response of the ferroelectric13,14,24 that can moderately screen

the polarization field. In previous investigations, this parameter has been varied widely for both

PT and BT: εb/ε0 = 4 to 70.15,17,25 We choose εb/ε0 = 1013 and 7.3514 for PT and BT, respectively,

i.e., we use values that are close to those of the electronic contribution ε∞ to the total dielectric

permittivity24 for these materials. It should also be noted that varying this parameter does not seem

to affect the results presented in this work.

The state of the dielectric matrix surrounding the FE inclusion is governed by a different set of

equations. ST and a-Si are assumed to be linear dielectrics, with an isotropic dielectric permittivity

εm. The following equation must be satisfied for the electrostatic potential within the matrix:

∇ (εm · ∇Φ) = 0, (12)

complemented by the stress divergence equation:

∂σij
∂xj

= 0. (13)

The system boundary conditions include vanishing elastic distortions far away from the inclusion,

i.e., (u → 0) at ∂ΩM . The same governing equations exist in the vacuum region, except u is

nonexistent. Also, a short-circuited5 boundary condition on Φ is chosen for the pair of opposite

sides of the cube ΩM with plane normals oriented along [00 ± 1]. By adjusting the values of Φ

on these two sides, an external field can be applied. In the absence of the applied field, Φ→ 0 is

enforced on the boundary planes of ΩM (which are assumed to be far away from the inclusion).

Consistency checks were done to make sure that, as a function of the size of the inclusion sphere,

the internal (fringing) electrostatic potential and the strain fields originating from elastic distortions

did in fact vanish at the boundaries of the computational domain. Larger matrix domains were

needed to ensure fringing fields from larger spheres vanished.

Our approach implemented in FERRET 19 allows for solving coupled Eqs. 9 through 10 self-
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consistently for the displacement vector field u(r), polarization vector field P(r, t), and electrostatic

potential scalar field Φ(r). These equations are first separated into their respective subdomains,

and then cast into the weak-form suitable for Galerkin’s finite element method. A fully implicit

time integration is implemented in a Newton-Raphson scheme. The iterative Generalized Minimal

Residual26 algorithm is used to solve the block diagonal preconditioned linear system. The full

solve utilizes convergence to within 1× 10−6 relative nonlinear residual tolerance.

Since Eq. 9 is a partial differential equation that depends on time, an initial condition for

evolving the P field must be chosen. For this particular problem, we adopt an initial condition

that resembles a paraelectric state of the material at some T > TC , which forces P to be randomly

distributed near zero. The rationale for choosing such random parelectric initial condition (RPEIC)

is to ensure that there is no “memory” bias in the domain structure that forms as the energy is

dissipated out of the system by the gradient descent algorithm. Such condition is widely used

in phase field modeling of FE materials.4,5,15 The temperature is then immediately set below TC

and the TDLGD Eq. 9 is evolved (by solving 11 and 10 at each time step) until a (local) energy

minimum has been found. The simulation exit criterion is achieved when the difference in the

magnitude of the total energy is below 0.1% during the two consecutive time steps.

Quasi-static poling

In order to apply an electric field to the particle and calculate its field-dependent polarization

response, we use a quasi-static poling procedure. This procedure involves an application of the

electric field E along the [00±1] crystallographic direction. The TDLGD equations are then evolved,

as discussed above, so that an appropriate energy minimum is found in the presence of the applied

field. In order to improve the computational efficiency of these polarization curve calculations, the

converged solution at the previous value of the field is used as an an initial solution at the current
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value of the field in the following equation,

− γ ∂P
∂t

=
δ

δP

∫
Ω

d3r f (P) + ξ · P̂, (14)

where ξ is a random noise term with gaussian distribution which can effectively be related to thermal

fluctuations in a real experiment. The introduction of the noise term is helpful in ejecting the initial

solution out of its original energy well.
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Supplementary results

Core topologies

Figure 1: Panel (a) depicts cuts through the polarization texture at |P| = 0.35 C/m2 for the PT/ST
inclusion with d = 17 nm at zero applied field. The contour of the vortex core is also shown. In
panel (b), the same information is presented for the 18 nm BT/ST inclusion at |P| = 0.17 C/m2.
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Electrostrictive influence on polarization texture

Figure 2: Image slices perpendicular to the vortex core, showing polarization texture differences
between the states with (a) no electrostrictive coupling and (b) active electrostrictive coupling in a
d = 9 nm PT particle embedded in the ST matrix.

To examine the effects of the electrostrictive coupling on the equilibrium ferroelectric polar-

ization, we perform two calculations, one with the electrostrictive tensor components set to zero,

and the other with the “active” electrostrictive tensor, using identical RPEIC for both calculations.

The vortex-like structure that forms in the absence of electrostrictive coupling resembles a Landau

flux-closure domain27,28 mapped onto spherical geometry, as shown in the Supplementary Fig. 2(a)

for the PT/ST system with d = 9 nm. On the other hand, the presence of the electrostrictive coupling

softens the sharp 90◦ domain walls, producing a more rounded vortex-like state, as observed in Ref.

29–33, while slightly depressing the value of |P| at the surface (by about 13%) — as can be seen by

the comparison of panels (a) and (b) of the Supplementary Fig. 2. The vortex core textures also

differ, with the polar directors pointing out-of-plane in the panel (a), while being strictly in-plane in

the panel (b).
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Evaluating vorticity of polarization textures

Figure 3: Kernel ridge regression (KRR) fits for the magnitude of the average Chern number density
|n̄CS| as a function of the particle size. Flattened out curve regions at large d indicate the presence
of multidomains in the polarization texture. Note that such flattening occurs at different particle
sizes, compared to the Fwall dependence presented in Fig. 2 in the main text, indicating that these
two measures of system vorticity are not completely equivalent.
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Easy and hard axis poling in the monodomain system

Figure 4: Applied field-dependent polarization curves for a PT particle with d < dv embedded in the
ST dielectric medium. Electric field is applied along the ẑ direction, while different crystallographic
orientations of the PT unit cell are aligned with the field by rotating the particle: Red curve: [001],
or easy polar axis, corresponding to the preferred orientation of P in bulk PT (space group P4mm);
Blue curve: [110] orientation; Green curve: [111] orientation. The latter two orientations can
be considered as hard polar axes in bulk PT, with corresponding average polarizations depressed,
compared to the easy-axis case.
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