1	Supporting information
2	
3	SERS- and luminescence-active Au–Au–UCNP trimers for
4	attomolar detection of two cancer biomarkers
5 6 7	Aihua Qu ^{1,2#} , Xiaoling Wu ^{1,2#} , Liguang Xu ^{1,2} , Liqiang Liu ^{1,2} , Wei Ma ^{1,2} , Hua Kuang ^{1,2*} , Chuanlai Xu ^{1,2*}
8	¹ International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu,
9	214122, PRC
10	² State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PRC
11	*Corresponding Authors: kuangh@jiangnan.edu.cn; xcl@jiangnan.edu.cn
12	
13	
14	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	

5 Fig. S1 TEM images of Au-Au-UCNP trimers assemblies with different time. (A) 0 h,
6 (B) 2 h, (C) 4 h, (D) 8 h, (E) 12 h, (F) 16 h.

Figure. S2 (A) Representative TEM images of Au-Au-UCNP trimers in buffer. (B)
Statistical analysis of different products in the reactions of trimers assembly.
Notations "sp", "dm", "tm", and "mp" stands for single-particles, dimers, Au-AuUCNP trimers, and multiparticle assemblies (>3), respectively.

2 Fig. S3 DLS of Au NPs, UCNPs and Au-Au-UCNP trimers assemblies in the
3 absence/presence of AFP and Mucin-1.

2 Fig. S4 Higher magnification TEM images of Au-Au-UCNP NPs trimers assemblies.

Fig. S5 AFP and Mucin-1 simultaneous detection based on luminescence and Raman
with Au-Au-UCNP trimers. (A) luminescence spectra for different concentration of
AFP and Mucin-1, (B) Standard curve for AFP detection with corresponding peak
intensities at 542 nm, (C) Raman spectra for different concentration of AFP and
Mucin-1, (D) Standard curve for Mucin-1 detection with corresponding peak
intensities at 1084 cm⁻¹.

2 Fig. S11 Raman spectra of human serum samples diluted 10^5 times.

- Fig. S12 (A) TEM of Upconversion nanoparticles. (B) TEM of Au nanoparticles.

- 1 Table S1 DNA sequences for self-assembled Au-Au-UCNP trimers and applied in
- 2 detection.
- 3

5					
	Types	Sequences			
		5'-SH-GGCAGGAAGA CAAACAGGAC CGGGTTGTGT			
	AFP-aptamer	GGGGTTTTAAGAGCGTCGCC TGTGTGTGGT			
		CTGTGGTGCT GT-3'			
	Mucin-1-aptamer	5'-GCAGTTGATCCTTTGGATAC CCTGG-SH-3'			
	Complementary	5'-GATCAACTGC ACAGCACCAC AGACC-SH-3'			
4					
5					
6					
7					
8					
9 10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
22					
23					
24					
25					
26					
27					
28					
29					
3U 21					
32					

	Serum samples	Serum samples Original Diluted Detecte		Detected
		concentration	concentration	concentration
		(pM)	(aM)	(aM)
	1	12.9	1.29	1.31±0.21
	2	17.1	1.71	1.73±0.32
	3	19.8	1.98	2.01±0.24
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				

1 Table S2 Practical analysis of AFP in human blood serum (n=3).

	Serum samples	Original	Diluted	Detected
		concentration	concentration	concentration
		(nM)	(fM)	(fM)
	1	6.1	0.61	0.62±0.13
	2	3.3	0.33	0.36±0.32
	3	1.6	0.16	0.14±0.24
2				
3 4				
5				
6				
7				
8 Q				
10				
11				
12				
13				
14				
15				
16				
17				
10				
20				
21				
22				
23				
24				
25				
26 27				
27 28				
29				
30				
31				
32				
33				
34				
35				

1 Table S3 Practical analysis of Mucin-1 in human blood serum (n=3).

Table S4 Practical analysis of AFP and Mucin-1 in human blood serum (n=3).

	Serum samples	Original AFP	Diluted AFP	Detected AFP
		concentration	concentration	concentration
		(pM)	(aM)	(aM)
	1	13.2	1.32	1.29±0.17
	2	15.3	1.53	1.57 ± 0.26
	3	17.5	1.75	1.73±0.22
		Original Mucin-1	Diluted Mucin-1	Detected Mucin-1
		concentration	concentration	concentration
_		(nM)	(fM)	(fM)
	1	5.8	0.58	0.55 ± 0.21
	2	4.3	0.43	0.47 ± 0.34
_	3	2.1	0.21	0.18±0.18
3				
4				
5				
6				
7				
8				
9 10				
10				
11 12				
12 13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

Detection Method	Detection	Detection	Reference
	Limit	Mode	
 Quantum-dot-based homogeneous	0.4 ng/mL	singlet	[1]
time-resolved fluoroimmunoassay			
Electrochemical immunosensor	0.05 ng/mL	multiple	[2]
based on graphene nanocomposites			
Gold Nanowire-Functionalized	0.01 ng/mL	singlet	[3]
Carbon Nanotubes			
Surface plasmon resonance imaging	100 pg/mL	singlet	[4]
immunoassay			
Homogeneous immunoassay and DNA	714 fM	multiple	[5]
hybridization assays using GNPs			
Photoelectrochemical Immunosensing	0.13 pg/mL	Singlet	[6]
Electrochemiluminescence biosensing	0.031 ng/mL	Singlet	[7]
Electrochemiluminescent immunosensor	0.2 pg/mL	Singlet	[8]
based on Graphene–Ruthenium(II)			
Composites			
Au@Ag nanorod-based colorimetric	30 pg/mL	Singlet	[9]
sensor			
Carbon Nanotubes Multifunctionalized by	70 aM	double	[10]
Rolling Circle Amplification			
SERS-active silver nanoparticle trimers	0.097 aM	Singlet	[11]

1 Table S5 Other sensing systems of AFP detection.

+

1	Fable S	6 Other	sensing	systems	of Muci	n-1 detection	n.
---	----------------	---------	---------	---------	---------	---------------	----

Detection Method	Detection Limit	Detection	Reference
		Mode	
Electrochemiluminescence System	2.8 fg/mL	double	[12]
Coupled with Target Recycling			
Amplification Strategy			
SERS active bimetallic core-satellite	4.3 aM	multiple	[13]
nanostructure			
Electrochemical aptamer biosensor	2.2 nM	singlet	[14]
based on an enzyme-gold			
nanoparticle			
Carbon Nanospheres	6.52 nmol/L	singlet	[15]
Featured Fluorescent Aptasensor			
Impedimetric aptasensor based on	0.1 nM	singlet	[16]
gold nanoparticles			
Aptamer-based electrochemical	50 nM	Singlet	[17]
Biosensor			
SERS Encoded Silver Pyramids	9.2 aM	Multiple	[18]
Electrochemiluminescence	4.5 fg/mL	Singlet	[19]
immunosensor based on			
AuNPs@Fe ₃ O ₄ nanocomposite			
Electrochemiluminescence Biosensor	0.5 fM	Singlet	[20]
Based on Au-ITO Hybrid Bipolar			
Electrode			

1 **Reference**

- 2 [1] M. J. Chen, Y. S. Wu, G. F. Lin, J. Y. Hou, M. Li, T. C. Liu, Anal. Chim. Acta
 3 2012, 741, 100-105.
- 4 [2] X. Chen, X. L. Jia, J. M. Han, J. Ma, Z. F. Ma, *Biosens. Bioelectron.* 2013, **50**, 5 356-361.
- 6 [3] H. Z. Cui, C. L. Hong, A. Ying, X. M. Yang, S. Q. Ren, Acs Nano 2013, 7, 78057 7811.
- 8 [4] W. H. Hu, G. L. He, T. Chen, C. X. Guo, Z. S. Lu, J. N. Selvaraj, Y. Liu, C. M. Li,
- 9 Chem. Commun. 2014, 50, 2133-2135.
- 10 [5] C. Xie, F. Xu, X. Huang, C. Dong, J. Ren, *J. Am. Chem. Soc.* 2009, **131**, 12763-11 12770.
- 12 [6] Y. J. Li, M. J. Ma, J. J. Zhu, Anal. Chem. 2012, 84, 10492-10499.
- 13 [7] S. L. Liu, J. X. Zhang, W. W. Tu, J. C. Bao, Z. H. Dai, *Nanoscale* 2014, 6, 241914 2425.
- 15 [8] F. N. Xiao, M. Wang, F. B. Wang, X. H. Xia, Small 2014, 10, 706-716.
- 16 [9] F. Zhang, J. Zhu, J.-J. Li, J.-W. Zhao, J. Mater. Chem. C 2015, 3, 6035-6045.
- [10] B. Zhao, J. Yan, D. F. Wang, Z. L. Ge, S. J. He, D. N. He, S. P. Song, C. H. Fan, *Small* 2013, 9, 2595-2601.
- 19 [11] X. Wu, P. Fu, W. Ma, L. Xu, H. Kuang, C. Xu, *Rsc Adv.* 2015, 5, 73395-73398.
- 20 [12] X. Jiang, H. Wang, H. Wang, R. Yuan, Y. Chai, Anal. Chem. 2016, 88, 924321 9250.
- [13] J. J. Feng, X. L. Wu, W. Ma, H. Kuang, L. G. Xu, C. L. Xu, *Chem. Commun.*2015, 51, 14761-14764.
- [14] R. Hu, W. Wen, Q. L. Wang, H. Y. Xiong, X. H. Zhang, H. S. Gu, S. F. Wang, *Biosens. Bioelectron.* 2014, 53, 384-389.
- [15] C. Y. Li, Y. Meng, S. S. Wang, M. Qian, J. X. Wang, W. Y. Lu, R. Q. Huang, *Acs Nano* 2015, 9, 12096-12103.
- 28 [16] X. Liu, Y. Qin, C. Y. Deng, J. Xiang, Y. J. Li, Talanta 2015, 132, 150-154.
- 29 [17] F. Ma, C. Ho, A. K. H. Cheng, H. Z. Yu, *Electrochim. Acta* 2013, 110, 139-145.
- 30 [18] L. G. Xu, W. J. Yan, W. Ma, H. Kuang, X. L. Wu, L. Q. Liu, Y. Zhao, L. B.
- 31 Wang, C. L. Xu, Adv. Mater. 2015, 27, 1706-1711.
- 32 [19] J. X. Wang, Y. Zhuo, Y. Zhou, R. Yuan, Y. Q. Chai, *Biosens. Bioelectron*. 2015,
 33 71, 407-413.
- [20] M. S. Wu, D. J. Yuan, J. J. Xu, H. Y. Chen, *Anal. Chem.* 2013, 85, 11960-11965.