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1) Effect of the contact stiffness on wave scattering  

The wave scattering displacements after incident with a nano-feature can be determined using equation 
(7) in the paper. The coefficients of this equation depend on the wavenumbers in the sample matrix and 
the nano-feature that are related to the longitudinal and shear wave velocities. These wavenumbers 
are: 

𝛼𝛼i2 = 𝜔𝜔2𝜌𝜌i
𝜆𝜆i+2µi

 , 𝛽𝛽i2 = 𝜔𝜔2𝜌𝜌i
𝜆𝜆𝑖𝑖

          (S-1) 

where i=1 denotes the sample matrix and i=2 represents the nano-feature. The Lame’s constants, 𝜆𝜆 and 
µ, are related by shear modulus (G) and bulk modulus (K) as: 𝜆𝜆 = 𝐾𝐾 − 2

3
𝐺𝐺 and µ = G. Therefore, the 

ultrasonic scattering response depends on the bulk modulus, shear modulus and density of the sample 
matrix and the nano-feature. Given that the maximum applied force on the tip is in order of few tens nN 
for soft materials (such as polymer) and a few hundred nN for hard materials and no evidence of plastic 
deformation was observed in previous experimental measurements1,2, we can limit our analysis to 
elastic deformation. Assuming elastic deformation means that the mechanical properties of both the tip 
and substrate, such as elastic and shear moduli, will not be affected. However, the local density of the 
material in the vicinity of the tip-sample contact when compressed will increase. To gain insight into the 
influence of the variation of local density of the sample on the wave scattering response, we calculated 
the local variation of the PS volume and consequently the local variation of PS density beneath the AFM 
tip. Using the FEM simulations to measure the contact radius and indentation depth under an applied 
load of 100 nN, it was determined that they were 15 nm and 1.3 nm, respectively. Under these 

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2017



Page 2 of 6 
 

conditions, the local density of the substrate increased approximately 7%. This 7% variation in local 
density changes the phase contrast of ultrasonic wave scattering by 3.5%. It can be concluded the 
maximum contribution of contact stiffness on ultrasonic wave scattering is less than 3.5% for soft 
materials. This influence of the contact stiffness on wave scattering may also have effect on the linear 
superposition of these two mechanisms, therefore the discrepancy between experimental data and 
theoretical results can be discussed by this explanation as well. 

  

2) Effect of the wave scattering on contact stiffness 

To understand the influence of the ultrasonic wave scattering on contact stiffness contrast, the Hertzian 
theory for contact stiffness can be discussed. Based on this model, the contact stiffness is defined as3: 

𝑘𝑘∗ =  �6𝐹𝐹0𝑅𝑅𝐸𝐸∗2
3           (S-2) 

where F0 is applied force, R is the tip radius, and E* is the effective Young’s modulus of the tip (Et & νt) 
and the sample (Es & νs) that is obtained by: 

1
𝐸𝐸∗

= 1−𝜈𝜈𝑡𝑡2

𝐸𝐸𝑡𝑡
+ 1−𝜈𝜈𝑠𝑠2

𝐸𝐸𝑠𝑠
          (S-3) 

Then, the contact stiffness mainly depends on the geometry of the AFM tip, tip radius, applied force on 
tip, and Poisson ratio and Young’s modulus in the tip and the sample. So, to determine the effect of the 
wave scattering on contact stiffness, we need to check the frequency dependence of Young’s modulus 
of the sample. The relation between Young’s modulus and frequency in polymer can be estimated by4: 

𝐸𝐸 = 𝐴𝐴 log10 𝑓𝑓 + 𝐵𝐵 (1010 dyne/cm2)        (S-4) 

where A, and B are constant values that can be estimated experimentally for a specific material. For 
example, in PS these values can be estimated as 0.037 and 3.32, respectively4. By considering these 
values and changing the frequency up to 5 MHz, the variation in Young’s modulus was 8%. This variation 
in Young’s modulus of polymer was applied in FEA simulation and the variation in contact stiffness (∆𝑘𝑘) 
was calculated. FEA simulation has been done on a PS sample that includes a gold nanoparticle with 50 
nm radius embedded 60 nm under the sample. Figure S1 schematically shows two polymer matrixes 
with different Young’s modulus. The contact stiffness variation due to the nanoparticle for PS (E) was 
calculated equal to ∆k = 2.16 N

m
, while it was equal to ∆k = 2.25 N

m
  for PS (E+8%E). Then, the variation 

of contact stiffness due to the 5 MHz ultrasonic wave is equal to: ∆k% = 2.25−2.16
2.16

= 4%. Since the 
phase will be affected linearly with contact stiffness, it is expected the contribution of wave scattering 
on contact stiffness will be around 4% for PS at 5 MHz excitation signal. The discrepancy between 
experimental and theoretical results can be explained by this explanation as well.  
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Figure S1- The contact stiffness variation due to the (a) gold nanoparticle (b) summation of the gold 
nanoparticle and 8% change in Young’s modulus of polymer.  

 

3) Boundary conditions for the cavity and elastic inclusion in wave scattering mechanism 

For an elastic nano-feature, boundary conditions are determined using continuity of stresses and 
displacements at the interface of elastic nano-feature and polymer, in which r=a (radius of sphere). 
These conditions give: 

⎣
⎢
⎢
⎡
𝐸𝐸11,n 𝐸𝐸12,n 𝐸𝐸13,n 𝐸𝐸14,n
𝐸𝐸21,n 𝐸𝐸22,n 𝐸𝐸23,n 𝐸𝐸24,n
𝐸𝐸31,n 𝐸𝐸32,n 𝑃𝑃𝐸𝐸33,n 𝑃𝑃𝐸𝐸34,n
𝐸𝐸41,n 𝐸𝐸42,n 𝑃𝑃𝐸𝐸43,n 𝑃𝑃𝐸𝐸44,n⎦

⎥
⎥
⎤
�

𝐴𝐴𝑛𝑛
𝐵𝐵𝑛𝑛
𝐶𝐶𝑛𝑛
𝐷𝐷𝑛𝑛

� = Ф0

⎣
⎢
⎢
⎡
𝐸𝐸1,n
𝐸𝐸2,n
𝐸𝐸3,n
𝐸𝐸4,n⎦

⎥
⎥
⎤
       (S-5) 

where 𝐸𝐸i,n =  𝜀𝜀i,n, 𝐸𝐸ij,n =  𝜀𝜀ij,n at r=a. The symbols, 𝜀𝜀𝑖𝑖𝑖𝑖,𝑛𝑛 in Eq. (S-5), linear combinations of the spherical 
harmonics, are defined as: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝜀𝜀1,n = −𝑖𝑖𝑛𝑛(2𝑛𝑛 + 1)(𝑛𝑛𝑗𝑗𝑛𝑛(𝛼𝛼1𝑟𝑟) − 𝛼𝛼1𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛼𝛼1𝑟𝑟),  𝜀𝜀2,n = −𝑖𝑖𝑛𝑛(2𝑛𝑛 + 1)𝑗𝑗𝑛𝑛(𝛼𝛼1𝑟𝑟)

𝜀𝜀3,n = −𝑖𝑖𝑛𝑛(2𝑛𝑛 + 1)[(𝑛𝑛2 − 𝑛𝑛 − 1
2
𝛽𝛽12𝑟𝑟2)𝑗𝑗𝑛𝑛(𝛼𝛼1𝑟𝑟) + 2𝛼𝛼1𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛼𝛼1𝑟𝑟)]                   

𝜀𝜀4,n = −𝑖𝑖𝑛𝑛(2𝑛𝑛 + 1)[(𝑛𝑛 − 1)𝑗𝑗𝑛𝑛(𝛼𝛼1𝑟𝑟) − 𝛼𝛼1𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛼𝛼1𝑟𝑟)]                                         
𝜀𝜀11,n = 𝑛𝑛ℎ𝑛𝑛(𝛼𝛼1𝑟𝑟) − 𝛼𝛼1𝑟𝑟ℎ𝑛𝑛+1(𝛼𝛼1𝑟𝑟) , 𝜀𝜀21,n = ℎ𝑛𝑛(𝛼𝛼1𝑟𝑟)                                            

𝜀𝜀31,n = �𝑛𝑛2 − 𝑛𝑛 − 1
2
𝛽𝛽12𝑟𝑟2� ℎ𝑛𝑛(𝛼𝛼1𝑟𝑟) + 2𝛼𝛼1𝑟𝑟ℎ𝑛𝑛+1(𝛼𝛼1𝑟𝑟)                                          

𝜀𝜀41,n = (𝑛𝑛 − 1)ℎ𝑛𝑛(𝛼𝛼1𝑟𝑟) − 𝛼𝛼1𝑟𝑟ℎ𝑛𝑛+1(𝛼𝛼1𝑟𝑟)                                                                 
𝜀𝜀12,n = −𝑛𝑛(𝑛𝑛 + 1)ℎ𝑛𝑛(𝛽𝛽1𝑟𝑟), 𝜀𝜀22,n = −(𝑛𝑛 + 1)ℎ𝑛𝑛(𝛽𝛽1𝑟𝑟) + 𝛽𝛽1𝑟𝑟ℎ𝑛𝑛+1(𝛽𝛽1𝑟𝑟)         
𝜀𝜀32,n = −𝑛𝑛(𝑛𝑛 + 1)[(𝑛𝑛 − 1)ℎ𝑛𝑛(𝛽𝛽1𝑟𝑟) − 𝛽𝛽1𝑟𝑟ℎ𝑛𝑛+1(𝛽𝛽1𝑟𝑟)]                                           

𝜀𝜀42,n = −�𝑛𝑛2 − 1 − 1
2
𝛽𝛽12𝑟𝑟2� ℎ𝑛𝑛(𝛽𝛽1𝑟𝑟) − 𝛽𝛽1𝑟𝑟ℎ𝑛𝑛+1(𝛽𝛽1𝑟𝑟)                                         

𝜀𝜀13,n = 𝑛𝑛𝑗𝑗𝑛𝑛(𝛼𝛼2𝑟𝑟) − 𝛼𝛼2𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛼𝛼2𝑟𝑟) , 𝜀𝜀23,n = 𝑗𝑗𝑛𝑛(𝛼𝛼2𝑟𝑟)                                               

𝜀𝜀33,n = �𝑛𝑛2 − 𝑛𝑛 − 1
2
𝛽𝛽22𝑟𝑟2� 𝑗𝑗𝑛𝑛(𝛼𝛼2𝑟𝑟) + 2𝛼𝛼2𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛼𝛼2𝑟𝑟)                                            

𝜀𝜀43,n = (𝑛𝑛 − 1)𝑗𝑗𝑛𝑛(𝛼𝛼2𝑟𝑟) − 𝛼𝛼2𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛼𝛼2𝑟𝑟)                                                                    
𝜀𝜀14,n = −𝑛𝑛(𝑛𝑛 + 1)𝑗𝑗𝑛𝑛(𝛽𝛽2𝑟𝑟), 𝜀𝜀24,n = −(𝑛𝑛 + 1)𝑗𝑗𝑛𝑛(𝛽𝛽2𝑟𝑟) + 𝛽𝛽2𝑟𝑟ℎ𝑛𝑛+1(𝛽𝛽2𝑟𝑟)            
𝜀𝜀34,n = −𝑛𝑛(𝑛𝑛 + 1)[(𝑛𝑛 − 1)𝑗𝑗𝑛𝑛(𝛽𝛽2𝑟𝑟) − 𝛽𝛽2𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛽𝛽2𝑟𝑟)]                                              

 𝜀𝜀44,n = −�𝑛𝑛2 − 1 − 1
2
𝛽𝛽22𝑟𝑟2� 𝑗𝑗𝑛𝑛(𝛽𝛽2𝑟𝑟) − 𝛽𝛽2𝑟𝑟𝑗𝑗𝑛𝑛+1(𝛽𝛽2𝑟𝑟)                                             

     (S-6) 

Eq. (S-5) shows that 𝐴𝐴𝑛𝑛 and 𝐵𝐵𝑛𝑛 depend on Bessel and Hankel functions in which their arguments are a 
function of ka, where k is wave number and a is the nano-feature radius. In our paper, the wave number 
in case of polymer and 1 MHz frequency is ~ 103 m-1 and the nano-feature radius is ~ 10−7 m. Since 
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𝑘𝑘𝑘𝑘~ 10−4 ≪ 0.1 ≪ 1, we are in the Rayleigh scattering regime5. In this regime, 𝐴𝐴𝑛𝑛 and 𝐵𝐵𝑛𝑛 can be 
explicitly evaluated as a close approximation. This approximation only neglects higher order of 𝑘𝑘𝑘𝑘 as: 

𝑗𝑗𝑛𝑛(𝑘𝑘𝑘𝑘) = 2𝑛𝑛𝑛𝑛!(𝑘𝑘𝑘𝑘)2

(2𝑛𝑛+1)!
[1 + 𝑂𝑂(𝑘𝑘𝑘𝑘)2]       (S-7) 

ℎ𝑛𝑛(𝑘𝑘𝑘𝑘) = 2𝑛𝑛!
2𝑛𝑛𝑛𝑛!𝑖𝑖(𝑘𝑘𝑘𝑘)𝑛𝑛+1

[1 + 𝑂𝑂(𝑘𝑘𝑘𝑘)2]       (S-8) 

Unlike an elastic inclusion, for spherical cavity the boundary conditions will be simplified as the 
continuity of the stresses6: 

𝜏𝜏𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖 + 𝜏𝜏𝑟𝑟𝑠𝑠 = 0           (S-9) 

𝜏𝜏𝜃𝜃𝑖𝑖𝑛𝑛𝑖𝑖 + 𝜏𝜏𝜃𝜃𝑠𝑠 = 0           (S-10) 

where 𝜏𝜏 denotes stress for incident and scatter waves in r and 𝜃𝜃 directions. This yields two equations: 

�
𝐸𝐸31,n 𝐸𝐸32,n
𝐸𝐸41,n 𝐸𝐸42,n

� �𝐴𝐴𝑛𝑛𝐵𝐵𝑛𝑛
� =  Ф0 �

𝐸𝐸3,n
𝐸𝐸4,n

�         (S-11) 

Then, the coefficients 𝐴𝐴𝑛𝑛 and 𝐵𝐵𝑛𝑛 will be determined, and substituted in Eq. (7) in manuscript. To have a 
model with a minimum approximation and determine above mentioned coefficients with highest 
accuracy, we consider the two higher order terms of Bessel and Hankel functions and their series are 
solved numerically for the value of n up to 10. We have checked the convergence of our results for 
higher values of n, and higher order terms of Bessel and Hankel function. It was observed that the 
results are converged with less than 1% error. 

4) The contribution of contact stiffness on phase contrast 

In addition to phase contrast due to the ultrasonic wave scattering, a phase shift of ultrasonic-AFM 
happens from tip-sample interactions. To calculate this phase shift, the variation of contact stiffness 
(∆𝑘𝑘∗) should be determined using Eq. (11) in the manuscript.  

Then, an analytical model7,8 was used to calculate the value of phase contrast resulting from the 
variation of contact stiffness. This model considered the cantilever and the sample as independent 
systems in which the interaction force provides a coupling between them.  The solution of this pair of 
coupled nonlinear differential equations leads to contribution of contact stiffness on the phase contrast. 
The total phase factor can be determined as: 

∆𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡 = ∆𝛼𝛼 + ∆𝛽𝛽 + ∆𝜑𝜑𝑠𝑠 − ∆𝜑𝜑𝑖𝑖 − ∆𝜑𝜑𝑖𝑖𝑠𝑠       (S-12) 

where  

∆𝛼𝛼 =  −� 𝛾𝛾𝑠𝑠𝜔𝜔𝑐𝑐
(𝑘𝑘𝑠𝑠+𝑘𝑘𝑒𝑒)2+𝛾𝛾𝑠𝑠2𝜔𝜔𝑐𝑐

2� ∆𝑘𝑘∗         (S-13) 

∆𝛽𝛽 =  −� 𝛾𝛾𝑠𝑠∆𝜔𝜔
(𝑘𝑘𝑠𝑠+𝑘𝑘𝑒𝑒)2+𝛾𝛾𝑠𝑠2∆𝜔𝜔2�∆𝑘𝑘∗         (S-14) 

∆𝜑𝜑𝑠𝑠 = −�
�𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐2 +2𝑘𝑘𝑒𝑒𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐+𝑘𝑘𝑒𝑒2(𝛾𝛾𝑐𝑐+𝛾𝛾𝑠𝑠)𝜔𝜔𝑠𝑠�+�𝛾𝛾𝑐𝑐2𝛾𝛾𝑠𝑠−2𝛾𝛾𝑠𝑠𝑚𝑚𝑐𝑐(𝑘𝑘𝑐𝑐𝑐𝑐+𝑘𝑘𝑒𝑒)�𝜔𝜔𝑠𝑠

3+𝑚𝑚𝑐𝑐
2𝛾𝛾𝑠𝑠𝜔𝜔𝑠𝑠

5

��𝛾𝛾𝑐𝑐𝑘𝑘𝑠𝑠+𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐+𝑘𝑘𝑒𝑒(𝛾𝛾𝑐𝑐+𝛾𝛾𝑠𝑠)�𝜔𝜔𝑠𝑠−𝛾𝛾𝑠𝑠𝑚𝑚𝑐𝑐𝜔𝜔𝑠𝑠
3�

2
+��𝑘𝑘𝑐𝑐𝑐𝑐−𝑚𝑚𝑐𝑐𝜔𝜔𝑠𝑠

2+𝑘𝑘𝑒𝑒�𝑘𝑘𝑠𝑠+𝑘𝑘𝑒𝑒�𝑘𝑘𝑐𝑐𝑐𝑐−𝑚𝑚𝑐𝑐𝜔𝜔𝑠𝑠
2�− 𝛾𝛾𝑐𝑐𝛾𝛾𝑠𝑠𝜔𝜔𝑠𝑠

2�
2� ∆𝑘𝑘∗ (S-15)  
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∆𝜑𝜑𝑖𝑖 = −�
�𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐2 +2𝑘𝑘𝑒𝑒𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐+𝑘𝑘𝑒𝑒2(𝛾𝛾𝑐𝑐+𝛾𝛾𝑠𝑠)𝜔𝜔𝑐𝑐�+�𝛾𝛾𝑐𝑐2𝛾𝛾𝑠𝑠−2𝛾𝛾𝑠𝑠𝑚𝑚𝑐𝑐�𝑘𝑘𝑐𝑐𝑐𝑐+𝑘𝑘𝑒𝑒��𝜔𝜔𝑐𝑐

3+𝑚𝑚𝑐𝑐
2𝛾𝛾𝑠𝑠𝜔𝜔𝑐𝑐

5

��𝛾𝛾𝑐𝑐𝑘𝑘𝑠𝑠+𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐𝑐𝑐+𝑘𝑘𝑒𝑒(𝛾𝛾𝑐𝑐+𝛾𝛾𝑠𝑠)�𝜔𝜔𝑐𝑐−𝛾𝛾𝑠𝑠𝑚𝑚𝑐𝑐𝜔𝜔𝑐𝑐
3�

2
+��𝑘𝑘𝑐𝑐𝑐𝑐−𝑚𝑚𝑐𝑐𝜔𝜔𝑐𝑐

2+𝑘𝑘𝑒𝑒�𝑘𝑘𝑠𝑠+𝑘𝑘𝑒𝑒�𝑘𝑘𝑐𝑐𝑐𝑐−𝑚𝑚𝑐𝑐𝜔𝜔𝑐𝑐
2�− 𝛾𝛾𝑐𝑐𝛾𝛾𝑠𝑠𝜔𝜔𝑐𝑐

2�
2�∆𝑘𝑘∗ (S-16) 

∆𝜑𝜑𝑖𝑖𝑠𝑠 = −�
�𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐2+2𝑘𝑘𝑒𝑒𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐+𝑘𝑘𝑒𝑒2(𝛾𝛾𝑐𝑐+𝛾𝛾𝑠𝑠)∆𝜔𝜔�+�𝛾𝛾𝑐𝑐2𝛾𝛾𝑠𝑠−2𝛾𝛾𝑠𝑠𝑚𝑚𝑐𝑐(𝑘𝑘𝑐𝑐+𝑘𝑘𝑒𝑒)�∆𝜔𝜔3+𝑚𝑚𝑐𝑐

2𝛾𝛾𝑠𝑠∆𝜔𝜔5

��𝛾𝛾𝑐𝑐𝑘𝑘𝑠𝑠+𝛾𝛾𝑠𝑠𝑘𝑘𝑐𝑐+𝑘𝑘𝑒𝑒(𝛾𝛾𝑐𝑐+𝛾𝛾𝑠𝑠)�∆𝜔𝜔−𝛾𝛾𝑠𝑠𝑚𝑚𝑐𝑐∆𝜔𝜔3�
2
+�(𝑘𝑘𝑐𝑐−𝑚𝑚𝑐𝑐∆𝜔𝜔2+𝑘𝑘𝑒𝑒)𝑘𝑘𝑠𝑠+𝑘𝑘𝑒𝑒(𝑘𝑘𝑐𝑐−𝑚𝑚𝑐𝑐∆𝜔𝜔2)− 𝛾𝛾𝑐𝑐𝛾𝛾𝑠𝑠∆𝜔𝜔2�

2� ∆𝑘𝑘
∗ (S-17) 

Where 𝛾𝛾𝑠𝑠 and 𝛾𝛾𝑖𝑖 are damping coefficients in the sample and the cantilever, respectively. The sample 
frequency, cantilever frequency, and their difference frequency are denoted by 𝜔𝜔𝑠𝑠 , 𝜔𝜔𝑖𝑖 , and ∆𝜔𝜔, 
respectively. The sample contact stiffness that is determined by FEA simulation was denotes by 𝑘𝑘𝑠𝑠 , and 
𝑘𝑘𝑖𝑖  , and 𝑚𝑚𝑖𝑖 represent the stiffness and mass of the cantilever. In above equations, the effective stiffness 
constant of the nonlinear interaction force, 𝑘𝑘𝑒𝑒, is used to obtain from the experimental tip-sample force 
curve. The 𝑘𝑘𝑖𝑖𝑟𝑟, and 𝑘𝑘𝑖𝑖𝑐𝑐 are the cantilever stiffness constants corresponding to the rth and qth noncontact 
resonance modes of the cantilever having frequencies nearest 𝜔𝜔𝑠𝑠 and 𝜔𝜔𝑖𝑖 , respectively. The cantilever 
stiffness at higher-modes (kcn) can be determined as9,10: 

𝑘𝑘𝑖𝑖𝑛𝑛 = �𝑓𝑓𝑛𝑛
𝑓𝑓0
�
2
𝑘𝑘𝑖𝑖           (S-18) 

where higher flexural resonant frequencies (fn) for the rectangular cantilever can be obtained as11: 

𝑓𝑓𝑛𝑛
𝑓𝑓0

 = � 𝐶𝐶𝑛𝑛
1.87

�
2

, 𝑐𝑐1 = 1.87, 𝑐𝑐2 = 4.69, 𝑐𝑐3 = 7.87, 𝑐𝑐𝑛𝑛 ≈
2𝑛𝑛−1
2

𝜋𝜋     (S-19) 

Based on the above equations, phase contrast (∆𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡) has a linear dependence on variation of contact 
stiffness (∆𝑘𝑘∗): 

∆𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡 = 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡∆𝑘𝑘∗ 

where 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡 is a constant coefficient that is defined by material properties of the cantilever and the 
sample, as well as excitation frequencies. It is worth mentioning that analytical model includes the first-
order term in the nonlinearity. This term is sufficient enough to account for the most important 
operational ultrasonic-AFM7. 

5) Dimension of the contact area as a function of the set force 

Additional FEA simulations were performed to investigate the effect of the applied forces on the contact 
area using the FEA simulations described within the manuscript. Figure S2 shows the contact radius as a 
function of applied force. The FEA simulations have a gold nanoparticle, with a radius of 50 nm, 
embedded 60 nm in a PS matrix and a hemispherical tip of 150 nm. As it is expected, the higher applied 
force results bigger contact radius, and consequently higher contact stiffness.  A best fit line has been 
drawn using a power function 𝑌𝑌 = 𝐴𝐴𝑋𝑋𝐵𝐵 where A=2.72×10-6 and B=0.33. It is worth mentioning that this 
curve approximately follows the Hertzian contact theory where contact radius is defined as: 

𝑐𝑐𝑟𝑟 = �3𝐹𝐹0𝑅𝑅
4𝐸𝐸∗

3
 →  𝑐𝑐𝑟𝑟 = � 3𝑅𝑅

4𝐸𝐸∗
�
1
3 (𝐹𝐹0)

1
3 = (3.07 × 10−6) × (𝐹𝐹0)0.33     (S-20) 

where the discrepancy between the Hertzian theory and FEA is mainly due to the influence of the buried 
gold nanoparticle. 
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Figure S2- The contact radius as a function of applied forces for a PS sample that includes a gold 
nanoparticle with a radius of 50 nm embedded 60 nm under the sample surface. 
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