Electronic Supplementary Information (ESI)

High-bandwidth nanopore analysis by using a modified hidden Markov

model

Jianhua Zhang,*a Xiuling Liu,^a Yi-Lun Ying,*^b Zhen Gu,^b Fu-na Meng^b and Yi-Tao Long^b

^a School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China

^b Key Lab for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai 200237, P.R. China

*E-mail: zhangjh@ecust.edu.cn. *E-mail: yilunling@ecust.edu.cn. Tel.: +86-21-64253808

Hidden Markov Model

A standard HMM contains the following parameters¹⁻³:

1. The observation sequence O_1, O_2, L , O_T denoting a set of samples with the length of T.

2. The set of hidden states $S = \{S_1, S_2, L, S_N\}$. Each observed sample $O_t, t = 1, 2, L, T$ belongs to S with certain probability.

3. The $N \times N$ state transition probability matrix $A = \{a_{ij}\}$, where $a_{ij} = P(q_{t+1} = S_j | q_t = S_i)$,

 $1 \le i, j \le N$ denotes the state of the HMM at time t.

4. The initial state distribution $\pi = {\pi_i}$, where $\pi_i = P(q_1 = S_i), 1 \le i \le N$ is *N*-dimensional column vector.

5. The observation probability distribution matrix in the state S_i : $B = \{b_i(O_i)\}$, where O_i is the

observation at time t, and $b_i(O_t) = P(O_t | q_t = S_i), 1 \le j \le N$.

The HMM is usually used to solve the following three typical problems:

Problem 1. Given the model $\lambda = (\pi, A, B)$, determine the occurrence probability $P(O | \lambda)$ of observation sequence O_1, O_2, L, O_T . The typical method for this problem is Forward and Backward algorithm.

Problem 2. Given the model $\lambda = (\pi, A, B)$ and observation sequence O_1, O_2, L, O_T , find the optimal state sequence q_1, q_2, L, q_T such that the probability $P(O, S \mid \lambda)$ is maximized. The typical method for this problem is Viterbi algorithm, which will be briefly introduced later on.

Problem 3. Adjust the parameters in the model $\lambda = (\pi, A, B)$ such that the probability $P(O | \lambda)$ is maximized. There are two typical methods to optimize the HMM parameters: the Viterbi training algorithm (aka. segmental k-means in some literature)⁴ and Baum-Welch algorithm

The Viterbi algorithm

To find the optimum state sequence q_1, q_2, L , q_t of observation sequence O_1, O_2, L , O_t , we define the maximum probability along a single path at time *t* which accounts for the first *t* observations by the hidden state S_i as:

$$\delta_{t}(i) = \max_{q_{1},q_{2} \perp ,q_{t-1}} P(q_{1}q_{2} \perp q_{t} = S_{i}, O_{1}O_{2} \perp O_{t} | \lambda)$$
(9)

then we have

$$\delta_{t+1}(j) = \max_{1 \le i \le N} [\delta_t(i)a_{ij}] b_j(O_{t+1})$$
(10)

Moreover, we use $\psi_t(j)$ to indicate the state that maximizes $\delta_t(j)$. The procedure of finding the optimal state sequence consists of the steps as follows.

Step 1 - Initialization:

$$\delta_1(i) = \pi_i b_i(O_1), 1 \le i \le N$$

$$\psi_1(i) = 0$$
(3)

Step 2 - Recursion:

$$\delta_{t}(j) = \max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), 2 \le t \le T, 1 \le j \le N$$

$$\psi_{t}(j) = \arg\max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}], \quad 2 \le t \le T, 1 \le j \le N$$
(4)

Step 3 - Termination:

$$P^{*} = \max_{1 \le i \le N} [\delta_{T}(i)]$$

$$q_{T}^{*} = \arg\max_{1 \le i \le N} [\delta_{T}(i)]$$
(5)

Step 4 - Path (state sequence) backtracking:

$$q_t^* = \psi_{t+1}(q_{t+1}^*), \quad t = T - 1, T - 2, L$$
 (6)

Fig. S1. Flowchart of Viterbi training algorithm that alternately executes parameter re-estimation and Viterbi algorithm until convergence is reached.

Table S1. Comparison of the duration of the events estimated by MHMM, FWHM and DBCalgorithms.

Method	Duration of the detected event (µs)				
	Ι	II	III	IV	V
MHMM	70	80	70	80	140
FWHM	170	140	110	150	160
DBC	110	110	80	100	120

*MHMM was used to process the unfiltered experimental data. [†] FWHM and DBC were used to analysis the filtered experimental data. A poly(dA)₃₀ traversing through an α -hemolysin nanopore under 100 mV.

Fig. S2. The change of MRE index as a function of the number of events. The MRE of the MHMM method for 70 μ s-long simulated events with $\sigma = 0.5$ pA. The simulated events are generated in random, whose number is varied from 1000 to 15000.

References

(1) L R. Rabiner, Proc. IEEE., 1989, 77, 257-286.

- (2) R. Dugad, U. B. Desai, Bombay Technical Report No.: SPANN-96.1., 1996, 1-16.
- (3) B. H. Juang, L. R. Rabiner, Technometrics., 1991, 33, 251-272.

(4) T. K. Bhowmik, J. P. van Oosten, L. Schomaker, Presented at *Int. Conf. on Pattern Recognition and Machine Intelligence*, June 27 - July 01, 2011, Moscow, Russia.