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1) Linear relationship between thermoreflectance amplitude and surface temperature 

1a – Reflectance due to light scattering at the tip aperture 

Here, we offer a proof of the existence of a direct proportionality between the amplitude of the 

thermoreflectance signal δρ0(x,y), measured by near-field scanning thermoreflectance imaging 

(NeSTRI), and T0(x,y), the temperature at the sample surface, which is expressed by eq. 6 in our 

paper. Validity of eq. 6 is essential to infer T0(x,y) from NeSTRI measurements. In our proof, we 

will assume the validity of Rayleigh’s assumptions [s1] for electromagnetic radiation scattered at 

the aperture of the scanning near-field optical microscope (SNOM) tip. Rayleigh’s law is valid for 

scattering by objects with individual dimensions that are small compared with the wavelength of 

incident radiation. We assume that incident oscillating electric and magnetic fields induce electric 

and magnetic multipoles at the boundaries of the tip aperture, which oscillate in phase with the 

incident electromagnetic wave, and radiate energy in different directions. Furthermore, the tip 

apertures used in our SNOM and NeSTRI experiments are coated with non-ferromagnetic metals, 

in which electric dipoles are more significant than magnetic dipoles, so our proof will only deal 

with electric dipoles. As far as the wavelength is long compared to the size of the aperture, only 

multipoles of the lowest order, electric dipoles, are important. 

The geometry we utilize for our proof, which is a good approximation of our experimental 

setup, is shown in Figure S1. Incident radiation is a plane monochromatic wave at wavenumber k 

and wavelength λ = 2π/k, with direction of incidence defined by the unit vector n0, and complex 

incident polarization vector e0. It impinges an aperture of radius a bored in a relatively flat SNOM 

cantilever of thickness L. The associated incident electric field of intensity E0 can be expressed as 

xik

0inc eEE
⋅= 0n

0e .                                                        (S1)  
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Einc induces electric dipoles moments p and magnetic dipole moments µµµµ on the cylindrical surface 

of the SNOM tip aperture, which acts as a scatterer. Dipoles radiate energy at any generic 

directions indicated by unit vectors n and polarization vectors e. Far away from the aperture, the 

intensity of the scattered field along a generic direction is given by [s1] 
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where r is the distance between the tip aperture and the observer, c is the speed of light and ε0 is 

the dielectric permittivity in air, which is relatively close to that of vacuum. We neglect the second 

addend in eq. S2 since our SNOM tips are non-ferromagnetic and |µµµµ |/c << |p|. 

 

 

 

Figure S1. Small circular SNOM tip aperture of radius a and thikness L (a and L << λ = k/2π) 

drilled in a dielectric and non-ferromagnetic material and acting as a scatterer for plane and 

incident electromagnetic waves. The observer is positioned at a distance r and angle θ from the 

aperture.  
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Because the intensity of electromagnetic radiation is proportional to the square of the 

electric field, the amount of reflected light at any given direction is given by  
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To calculate the reflectance, the scattered and incident electric fields given by eqs. S2 and S1 must 

be replaced into eq. S3. In addition, it must be considered that the magnitude of the electric dipoles 

at the surface depend on the intensity of the incident electric field. Thus |p| ~ E0, with a 

proportionality coefficient that also depends on the complex dielectric constant (or complex 

refractive index) of the tip material. Finally, scattering contributions at point r from all of the 

induced electrical dipoles at the scatterer surface must be superimposed by means of an integration. 

For solving this scattering problem in an arbitrary geometry, it is convenient to decompose the two 

field vectors into components that are, respectively, parallel (E//sc
(n) and E//inc) and perpendicular 

(E ⊥sc
(n) and E⊥inc) to n0, and write them in a matrix form [s2]. Eq. S2 can thus be generalized as 
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In our particular cylindrical geometry, S, the scattering matrix, can be expressed as [s2] 
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This expression depends on the volume of the cylindrical aperture, V = πa2L, and on the form 

factor f, which is a consequence of the superimposition of the contributions from all of the 

dielectric dipoles in the particular geometry under consideration. For a cylinder, the form factor 

can be calculated as 
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from which it can be seen that f(θ,φ) ≈ −2 in the long wavelength approximation, at a << λ. 

Equation S5 also depends on the complex refractive indices of the two media, air and the tip 

material, through the factor |(m2 – 1) / (m2 + 2)| that is reminiscent of the proportionality factor 

between p and E0 offered by Clausius-Mossotti relationship. [s3] Also, in eq. (S5) m is the optical 

contrast coefficient 
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that represents the ratio between the complex refractive index of the tip material (Mt = Nt+iKt) and 

air, for which Ma ≈ Na ~ 1. In the specific geometry used for NeSTRI and SNOM measurements, 

the SMA coupler used to collect the reflected light is placed at the same z-axis level of the tip and 

therefore, at θ = 90o. In these conditions, and for f(θ,φ) ≈ -2, eqs. S4 and S5 lead to the relationship   
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and, for 〈exp(2ikr)〉 ≈ ½, to the following expression of the reflectance at θ = 90o: 
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The λ4 dependence of eq. S9 on the wavelength of the probe beam is reminiscent of a similar 

dependence in Rayleigh scattering [s1], and is indicative of the fact that Rayleigh’s law and eq. S9 

are derived under the same assumptions. 
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2a – Amplitude of the thermoreflectance signal 

In thermoreflectance measurements, the reflection coefficient determined via eq. S9 changes with 

the temperature of air due to the temperature dependence of m. When light heats the sample, heat 

is transferred to air that decreases in density, and its refractive index decreases accordingly, as 

                      Na(T) = Na(0) – χT                                                            (S10) 

where Na(0) ≈ 1 is the refractive index of air under ambient conditions, in the absence of transferred 

heat, and χ ≈ 6 10-4 K-1 is the air thermo-optical coefficient. [s4] It is worthwhile noting that, 

although χ is quite small, it has been demonstrated by several experiments in the literature to be 

sufficient to perform thermoreflectance measurements at the microscopic levels even with powers 

that are significantly lower than those used in our experiments [s5]. In order to estimate how eq. 

S10 affects the reflectance determined via eq. S9, we consider that Nt
2 << Kt

2 for nontransparent 

tip materials such as, in our experiments, aluminum (for which Mt = Nt + iKt = 0.90 + i6.21 at λ = 

532 nm probe beam wavelength [s6]). Thus, we can write 
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From this expression, by expanding the Clausius-Mossotti factor in Taylor series for sufficiently 

small values of m [i.e. (m2 – 1) / (m2 + 2) ≈ - ½ + ¾ m2] and by substituting it into eq. S9, we 

obtain the following expression for the temperature-dependent reflectance at the tip-air interface:  
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It is thus demonstrated that, under our specific assumptions, the thermoreflectance at the sample 

surface is given by 
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Thus, from our derivation, the proportionality coefficient between δρ0(x,y) and T0(x,y), which we 

introduced in equation 9, can be estimated as 

 h = −24π4L2a4χ / (r2λ4Kt
2).                                                 (S14) 

In eq. S14, h does not depend on the specific location of the sample at which the thermoreflectance 

is measured. It only depends on the radius and length of the tip aperture, the optical properties of 

the system, the probe beam wavelength, and the distance between the sample and the detector. 

Consequently, due to the generality of our derivation which does not assume any significant tip-

sample interaction, it remains demonstrated that the amplitude of the thermoreflectance signal 

measured by NeSTRI is linearly proportional to the temperature at the sample surface. It is 

worthwhile noting, from eq. (S14), that h < 0. Consequently, the thermoreflectance is lower at the 

times and locations at which the temperature is locally higher and the phases of T0(x,y) and δρ0(x,y) 

are shifted by 180o. Therefore, the two quantities are in phase opposition. 

 

 

 

 

 

 

 

 

 

 



S9 
 

2) Finite-difference method used to generate thermal conductivity images from equation 8 

2.1 Formulation of equation 9 in terms of finite differences 

In this section, we develop a numerical algorithm capable of modelling, from phase [δϕ0(x,y)] and 

amplitude [δρ0(x,y)] thermoreflectance images, the diffusion of heat along an inhomogeneous 

thermally conducting thin film on a thermally insulating substrate. Objective of the algorithm is to 

reconstruct, from thermoreflectance phase and amplitude images, the thermal conductivity k(x,y) 

that inhomogeneously varies from point to point of the film. Equation 8 in the text is written as 

[ ]y)(x,cosy(x,AhP

y)(x,δy)(x,ρy)k(x,y)(x,ρy)k(x,y)(x,ρy)k(x,

000

0000

δϕ=

ϕ∇δ−δ∇+δ∇⋅∇

)

22 ][
.              (S15) 

Eq. S15 represents the real part of Fourier equation for periodic and inhomogeneous heat 

generation in a sample of optical absorbance A0(x,y). A pump laser at uniform power density P0 

impinges the imaged sample area, and heat is locally generated proportionally to the amount of 

power being locally absorbed by the thin film. In our experiments, the substrate is optically non-

absorbing. Both P0 and A0(x,y) are known from independent experiments. The thermal 

conductivity k(x,y) is unknown, and so is h, the proportionality coefficient given by eq. S14 that is 

independent of x  and y. Due to the arbitrary and nonanalytical nature of A0(x,y, δϕ0(x,y) and 

δρ0(x,y), eq. S15 is a 2D first-order equation in k(x,y) which needs to be solved numerically. 

To solve eq. S15, we here introduce a first-order, finite-difference method, in which the 

differential equation of an image of P×Q pixels, will be transformed in an algebraic system of P×Q 

linear equations in the same number of scalar unknowns. We write eq. S15 in a way that each 

differential term, known or unknown, is expressed by a finite difference (FD). The following 

known FD terms are calculated (for i = 1…P and j = 1… Q) from the thermoreflectance amplitude 

image [δρ0(i,j)]: 
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where Ui,j and Vi.j are the two scalar components of the thermoreflectance gradient and i and j 

represent two unit vectors along coordinate directions x and y, respectively. The following known 

FD term is calculated from both the thermoreflectance phase [δϕ0(i,j)] and amplitude images: 

[ ] [ ] [ ]












δ

ϕ±ϕ
+

δ

ϕ±ϕ
=≈ϕ∇

2

00

2

00
000

y

j)(i,δ1)j(i,δ

x

j)(i,δj)1,(iδ
j)(i,δρy)(x,δy)(x,δρ

22

ji

2 --
Z , . (S18)            

In eqs. S16-S19, δx and δy are the width and height of each pixel, which are independent of i and 

j. In addition, in eq. S15, the unknown term ∇∇∇∇k(x,y) is written as a finite difference in the form: 
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where k(x,y) ≈ ki,j  at any point (i,j). The FDs expressed by eqs. S16-S19 can be replaced into eq. 

S16 to obtain a set of algebraic finite-difference equations of the form 

ji,ji,ij1ji,ji,j1,iji, GHYX =⋅+⋅+⋅ ±± KKK ,                                      (S20) 

in which the following quantities have been defined for compactness: 
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Where kG is the thermal conductivity of the substrate (i.e. k = kG = 1.1 W/m/K in the case of glass). 

In total, a number of P×Q scalar equations of the form of eq. S20 can be written to form an 

algebraic system in the set of unknowns {Ki,j} which will be numerically solved, giving us a 
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quantity proportional to thermal conductivity along the surface for each point, with a 

proportionality constant, h, to be determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Scheme used in our numerical finite-difference calculations to transform pixel images 

K(j = 1…P, j=1…Q) into column vectors K[1,..., P××××Q]. These scheme allows us to transform our 

finite-difference equation, eq. (S22), into an algebraic system of P×Q scalar equations in P×Q 

unknowns of the type A⋅⋅⋅⋅K = B, eq. (S28). Each scalar unknown, K[1], …, K[P×Q], represents the 

thermal conductivity of a specific pixel (i,j). The scalar equations have a different formulation 

depending if the pixel sits at the corner of the image, at an x-edge, at a y-edge, or in the bulk of 

the image, which is a consequence of the fact that we impose the boundary condition K[b] = kG 

for any point at an edge, or corner. 
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2.2 Solution of the finite-difference system with appropriate boundary conditions 

It is important to bear in mind that, although eq. S20 is valid in general, for any pixel (i,j) of our 

images, the thermal conductivity at the boundaries (i.e. at points where i = 1 or P, or j = 1 or Q) is 

known and must be equal to the thermal conductivity of the substrate. Due to the linear character 

of Fourier’s equation S15, for which the principle of superposition is valid,  if we solve  a system 

of equations of the form S20 with boundary conditions  

KG = K(i = 1 or P, j) = K(i, j = 1 or Q) = 0,                                     (S22) 

the thermal conductivity at the sample surface will be determined as 

 ki, j = h ⋅ Ki, j + kG.                                                          (S23) 

Consequently, our method is fully capable to reconstruct thermal conductivity images {ki, j} from 

NeSTRI experiments. 

In order to solve our algebraic system, it is convenient to rearrange it by labelling the 

variables with a single index, l = 1,.., P×Q, in lieu of two of them, i and j. The scheme used for 

such a rearrangement is reported in Figure S2. Each column j forming the images of the known 

quantities Xi,j, Yi,j , Hi,j, and Gi,j, and of the unknown Ki,j  is piled in a column vector of P×Q 

elements. This implies that for a certain number of equations of the form S20 (specifically at l = 

1,…P; l = P×(Q−1), …, P×Q; l = jP; and l = jP+1) at least one of the addends at the left hand of 

equation S20 corresponds to a boundary condition, for which  Kl = KG = 0, and is therefore null. 

In the specific cases of l pointing to image corners, two of the addends at the left hand of equation 

S20 correspond to boundary conditions and are null. We are dealing with four different types of 

finite-difference equations of the form S20, depending on the number of boundary conditions they 

involve:  
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a) Corner equations correspond to pixels (i, j) = (1,1); (i, j) = (P, 1); (i, j) = (1, Q) and (i, j) = (P, 

Q) [for which l = 1, l = P, l = (Q-1)×P+1, and l = P×Q) if a single-index notation is used, as in 

Figure S2]. In these cases, we have both Ki±1,j  = KG = 0 and Ki,j±1  = KG = 0. By transferring the 

known terms to the right hand of eq. S20, we obtain four linear equations of the form  

jiGjiGjijiij GYXGH ,,,, =⋅−⋅−=⋅ KKK ji, .        (S24)         

b) x-edge equations correspond to pixels (i, 1) and (i, Q) with i = 2,…, P−1  [for which l = jP or l 

= jP+1, with j = 2, …Q−1) if a single-index notation is used, as in Figure S2]. In these cases, we 

have Ki±1,j  = KG = 0. By moving the known term Xi,jKG to the right hand of eq. S20, we obtain 

2×(Q−2) linear equations of the form 

jiGjijiijji GXGHY ,,,, =⋅−=⋅+⋅ ± KKK ji,1ji, .                                     (S25) 

c) y-edge equations correspond to pixels (1, j) and (P, j) with j = 2,…, Q−1  [for which l = 2,…P−1 

and l = (Q−1)×P+2,…,Q×P−1 if a single-index notation is used, as in Figure S2]. In these cases, 

we have Ki,j±1  = KG = 0. By moving the known term Yi,jKG to the right hand of eq. S20, we obtain 

2×(P−2) linear equations of the form 

jiGjijiijji GYGHX ,,,, =⋅−=⋅+⋅ ± KKK ji,j1,i .                             (S26) 

d) Bulk equations: correspond to pixels that are not situated at the vicinity of the edges. This 

implies that, in general, each equation of the form S20 presents three nonzero unknowns.  

Equations of type S20, in the forms a), b), c) and d), can be combined in a matrix form A⋅K 

= B that can be solved using sparse-function algorithms (e.g. using MatlabTM) so that {Ki, j}  can 

be determined. By using the compact, single-index notation for which l = 1, …. P×Q  our system 

A⋅K = B that can be written as 
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After inverting the equation S27 using a specially designed MatlabTM routine and determining K, 

the column vector containing the values of (non-calibrated) thermal conductivity per each pixel 

have been rearranged into a P×Q matrix. 

 

 

 

 

 

 

 

 

 

 

 

 



S15 
 

3) Additional images from multifrequency NeSTRI measurements on test sample. 

 

 

Figure S3. Multifrequency NeSTRI phase images  (measured on test sample as in figure 1b of the 

paper) and example of fitting procedure on graphene domain. Up to a crossover frequency from 

135 Hz to 150 Hz, the phase in the multilayer graphene flake is larger than glass because of long 

thermal diffusion in graphene limited by the size of graphene. Above the crossover frequency Lth 

is controlled by the flake size, and Lth ∼ (D/ω)1/2. 
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Figure S4. Multifrequency NeSTRI amplitude images (measured on test sample as in figure 1b of 

the paper) and example of fitting procedure on graphene domain. 
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Figure S5. Continuous wave reflectance images recorded on test sample during NeSTRI 

measurements (configuration as in figure 1a). Note that the reported frequency values do not 

indicate that the measurement have been carried out at that specific frequency, but that the 

reflectance measurement have been carried out immediately after a NeSTRI measurement at the 

reported frequency, without the lock-in amplifierand with the detector connected to a DC 

amplifier. The AFM image of the measured graphene domain is also reported. 
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4) Negative test measurements 

Objective of this section is to demonstrate the genuineness of the amplitude and phase images 

measured using our experimental apparatus, and show they are originating from thermoreflectance 

oscillations at the air-sample interface, and not from scanning near-field artefacts, including 

periodic changes of the tip-surface distance due to periodic thermal expansion of the sample.  

To this end, a set of negative test samples, consisting of thermally evaporated aluminum 

thin films, have been deposited and analyzed. These samples were designed as shown in Figure 

S6, with a step between a large (several cm2) and 20-nm thick Al thin film, and an equally large, 

but thicker (D = 40 nm, 68 nm, or 80 nm), Al film on the right. Samples were prepared by thermal 

evaporation of Al pellets (K.J. Lesker) in a vacuum chamber integrated to a glovebox operating in 

nitrogen atmosphere (Nexus II, Vacuum Atmospheres Co.) that is described elsewhere [s7]. A 

uniform, 20-nm film is initially grown on glass, and the growth rate is checked using a Sycom 

STM2 quartz crystal monitor. As soon as the desired thickness is reached, a part of the sample is 

masked, and the deposition continues on the unmasked side of the sample, until the desired 

thickness D is reached. All samples were measured by NeSTRI, as described in the experimental 

section of the paper. The presence of a similar, 20-nm thick, region in all of the samples serves as 

a reference control for the NeSTRI amplitudes, and ensures that measurements performed on 

different samples are comparable.   

Our goal is to demonstrate that all these samples produce NeSTRI images, with amplitudes 

that are proportional to the volumetric heat that is locally generated within each sample and phases 

that are independent of the sample thickness. Our negative test samples will ensure that the thermal 

properties obtained from NeSTRI images do not depend on the sample geometry, but only on the 

material properties of aluminum. In addition, these experiments are useful to rule out near-field 
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optical artefacts due to periodic thermal dilatation of the samples at the same frequency of the 

pump beam pulses used for sample heating. If thermal dilatation could not be neglected, it would 

produce a shift δz(ω) of the sample surface that is proportional to the sample thickness D. A 

subsequent change of the tip-sample distance, z0 – δz(ω), will then occur. Consequently, signal 

amplitudes due thermal dilatation artefacts would be proportional to the film thickness: 

           δρ0 ∝ D.      (S28) 

Conversely, in the case of a genuine NeSTRI signal, the equation of heat (eq. 4) for a uniform thin 

film region becomes 

     cAl dT(t)/dt = H0 exp(iωt),         (S29) 

where cAl [J/m3/K] is the volumetric specific heat of Al and H0 [W/m3], the heat generated per unit 

volume of the sample, corresponds to the amount of light being absorbed by the entire cross section 

of an Al thin film at the pump-beam wavelength of 405 nm:   

H0 = (P0/D2) � exp(−����) ��
�

�
 = [P0/(αAlD2)][1− exp(−αAlD)],               (S30) 

Where P0 [in W/m2] is the photon flux of the pump beam, and αAl = 1.5 108 m-1 is the optical 

absorption coefficient of Al at 405 nm, the pump beam wavelength [s6]. As discussed in the text, 

a tentative uniform solution of the form  

δρ(t) = -hT(t) = -hT0 exp[i(ωt−δϕ0)] = δρ0 exp[i(ωt−δϕ0)]                      (S31) 

can be sought and replaced into eq. S29. In eq. S31, h is a proportionality coefficient (see 

Supplementary Information Section 1) and δρ(t) is the oscillatory thermoreflectance signal of 

amplitude δρ0 and phase δϕ0, caused by temperature oscillations of amplitude T0. By replacing 

eqs. S30 and S31 into eq. S29, we then obtain 

δρ0 = hP0/(ωcAlαAlD2)[1− exp(-αAlD)] 

δϕ0 = -900 = const(D).                                                    (S32) 
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 Contrarily to eq. S28, eq. S32 indicates that genuine NeSTRI amplitude signals decrease 

at increasing thickness because of lower power density generated in thicker and more voluminous 

samples, which produce smaller temperature raises. This can be appreciated from figure S6, which 

shows that the left (20-nm thick) side of the image of δρ0 exhibits a significantly higher amplitude 

of the right side (40-nm thick) of the image. Conversely, the image of δϕ0 does not exhibit any 

significant difference or thickness dependence far away from the interface between the two 

thicknesses. Since eq. S32 indicates that δρ0 does not depend on the thermal conductivity k in a 

homogeneous and flat region, but only on the volumetric specific heat c, the information on k 

contained in δϕ0(x, y), for values of x within a few thermal diffusion lengths in the proximity of 

an edge, are critical to determine k in uniform thin films by NeSTRI.           

 

 

 

 

 

 

 

 

Figure S6. Geometry of negative test samples, with corresponding 405-nm SNOM images in 

transmittance (τ) and reflectance (ρ). AFM shows that images are taken at the edge between 20-

nm thick and 40-nm thick Al regions. The granular structures of aluminum present on both regions 

are not visible in the thermal images, of which the phase (δϕ0) becomes thickness-independent at 

~30 µm from the edge, while the amplitude (δρ0) decreases with thickness accordingly to eq. S32. 
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Figure S7. NeSTRI signal amplitude (δρ0) as a function of Al thin film thickness (D). The blue line 

is a data fitting accordingly to eq. S32. The fact that δρ0 decreases at increasing D, as well as the 

good quality of the fit, are a strong indication of the genuineness of the NeSTRI signal, originated 

from thermoreflectance effects at the air-sample surface. Conversely, near-field optical artefacts 

would have led δρ0 to increase proportionally to the thin-film volume per unit surface area and, 

consequently, with D.   

The findings presented in Figure S6 are quantified and further substantiated in Figure S7 

that reports the NeSTRI signal amplitude as a function of Al thickness for the entire set of negative 

test samples. The blue line in Figure S6 is a data fitting accordingly to eq. S32. The fitting quality 

is remarkably good, which is an additional strong indication that the NeSTRI signal originates 

from thermoreflectance effects at the air-sample surface, and not from thermal expansion artefacts 

that would have led the amplitude of the signal to linearly increase with D. Finally, from Figure 

S6, it is apparent that the granular Al structures that can be observed in the AFM image are also 

reproduced in the reflection (ρ) and transmission (τ) SNOM images, but do not significantly affect 

the NeSTRI images, neither in phase nor amplitude. We can thus infer that NeSTRI is free from 

nano-optical artifacts [s8] producing images that are mere optical readouts of the AFM topography. 
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