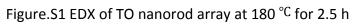
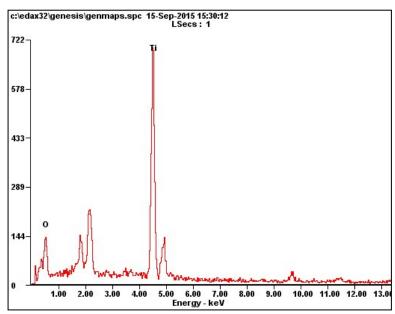
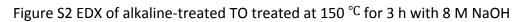
Supporting Information

Novel Design of Highly [110]-Oriented Barium Titanate Nanorod Array and Its High Energy Density and Ultrafast Charge-Discharge Ability in Nanocomposites


Lingmin Yao^a, Zhongbin Pan^b, Jiwei Zhai^{*b}, Haydn H.D. Chen^{a*}


^aInstitute of Applied Physics and Materials Engineering, Faculty of Science and Technology, University of Macau, Macao SAR 999078, China


^bKey Laboratory of Advanced Civil Engineering Materials of Ministry of Education,

Functional Materials Research Laboratory, School of Materials Science & Engineering, T ongji University, 4800 Caoan Road, Shanghai 201804, China.

* haydnchen@umac.mo (Haydn H.D. Chen) and apzhai@tongji.edu.cn (Jiwei, Zhai)

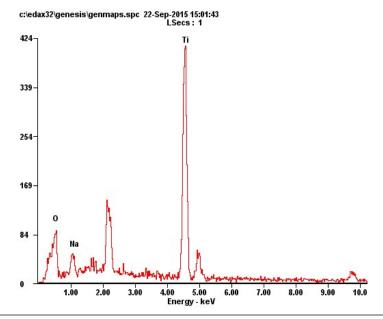
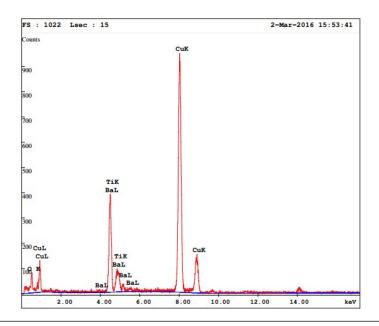



Figure S3 EDX of BT nanorod array grown in 0.1 M Ba(OH)2, 70 ml DI, 30ml glycol ether and 0.25 M KNO3 at 210 $^{\circ}$ C for 6h (The element of Cu comes from the Copper screen)

Pigure S4 the charge-discharge circuit

High-voltage Vacuum switch

Vacuum switch

Specimen L₀

Oscilloscope