Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Investigation on heteroatom doped graphene ability for biorecognition

Huidi Tian,^a Zdenek Sofer,^b Martin Pumera,^a Alessandra Bonanni^a*

^aDivision of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

^bDepartment of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague 6, Czech Republic

Fax: (65) 6791-1961

Email: a.bonanni@ntu.edu.sg

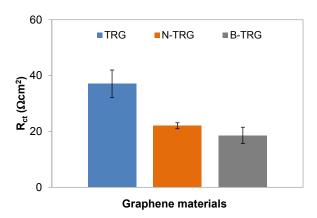


Figure S1. Impedimetric characterization of undoped thermally reduced graphene (TRG), nitrogen-doped thermally reduced graphene (N-TRG) and boron-doped thermally reduced graphene (B-TRG). Histograms represent the charge transfer resistance normalized by the electroactive surface area of TRG, N-TRG and B-TRG. All measurements were carried out in 0.1 M PBS buffer solution containing 10 mM $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$.

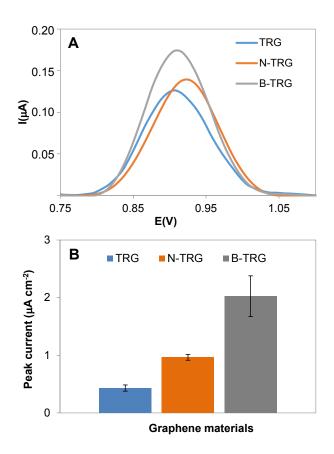


Figure S2. Differential pulse voltammetry (DPV) measurement for FB_1 aptamer on TRG, N-TRG and B-TRG. A: DPV signal for guanine peak. B: histograms representing peak current per square surface area unit.