Electronic Supplementary Information (ESI)

Citrate-stabilized Gold Nanoparticles hinder fibrillogenesis of a pathologic

variant of β_2 -microglobulin

Cristina Cantarutti,^a Sara Raimondi,^{b,c} Giorgia Brancolini,^d Alessandra Corazza,^{a,c} Sofia Giorgetti,^{b,c} Maurizio Ballico,^e Stefano Zanini,^e Giovanni Palmisano,^f Paolo Bertoncin,^g Loredana Marchese,^{b,c} P. Patrizia Mangione,^{b,c,h} Vittorio Bellotti,^{b,c,h} Stefano Corni,^d Federico Fogolari,^{a,c} and Gennaro Esposito ^{a,c,e}

^c INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy,

- ^f Department of Chemical and Environmental Engineering, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, UAE,
- ⁹ Dipartimento Scienze della Vita, Università di Trieste, Via Weiss 2 , 34128 Trieste, Italy,

^a DSMB, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy,

^b Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy,

^d CNR Istituto Nanoscienze, Via Campi 213/A, 41125 Modena, Italy,

^e Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE,

^h Division of Medicine, University College of London, London NW3 2PF, UK.

Fig. S1 Bar plots of individual peak attenuations calculated as intensity ratios of the corresponding signals in the HSQC spectra of D76N β 2m with and without Cit-AuNPs at protein/NP ratio of 53 (a), 107 (b) and 213 (c). The two horizontal lines indicate the standard deviation levels above and below the average attenuation.

Fig. S2 Principal Component analysis: first three dominant fluctuations of the (a) first D76N β 2m monomer in the dimer and (b) second D76N β 2m in the same dimer simulated in solvent. The first protein has distortions which correlate AB and DE loop motions which are notably larger than those of the second protein.

Fig. S3 Native agarose gel electrophoresis of 20 μ M D76N β 2m in non-fibrillogenic conditions (a) without Cit-AuNPs and (b) with Cit-AuNPs, at different incubation times. The loss of protein in presence of Cit-AuNPs can be observed also in non-fibrillogenic conditions: the amount of free protein is lower if it is incubated with Cit-AuNPs (b) with respect to the control (a). In addition, the second species detected in presence of Cit-AuNPs when the protein is exposed to fibrillogenic conditions (see Fig. 10b in the main text) is absent.

Fig. S4 Native agarose gel electrophoresis of 20 μ M D76N β 2m incubated under fibrillogenic conditions (a) without Cit-AuNPs and (b) with Cit-AuNPs, at different incubation times (the black box indicates the unknown species that was invariably observed in the presence of Cit-AuNPs). In (c) only Cit-AuNPs were loaded on the gel as a control of the absence of any staining due to Cit-AuNPs.

Fig. S5 Native agarose gel electrophoresis of 20 μ M D76N β 2m incubated under fibrillogenic conditions: (a) and (c) without Cit-AuNPs and (b) and (d) with Cit-AuNPs. The gels reported in (c) and (d) were run after long centrifugation (14000 rpm, 30 minutes) that ensures complete precipitation of Cit-AuNPs, as checked by UV-Vis. Even in (d) the presence of the unknown species (boxed in black) is noticeable, confirming the absence of nanoparticles in this species.