# **Supporting information**

# Graphene quantum dots based "switch-on" nanosensors for intracellular cytokine monitoring

Guozhen Liu, <sup>a,b</sup>\* Kai Zhang,<sup>a,c</sup> Ke Ma,<sup>a,c</sup> Andrew Care,<sup>a</sup> Mark R. Hutchinson,<sup>d</sup> Ewa M. Goldvs<sup>a</sup>

<sup>a</sup>ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University,

North Ryde 2109, Australia

<sup>b</sup>Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College

of Chemistry, Central China Normal University, Wuhan 430079, P. R. China

<sup>c</sup>State Key Laboratory of Supramolecular Structure and Materials, College

of Chemistry, Jilin University, Changchun 130012, P. R. China

<sup>d</sup>ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide,

Australia

#### Table of contents in Electronic supplementary information:

## 1. Preparation of Grpahene Quantum Dots (GQDs)

The GQDs were prepared at Yang's Group (Jilin University, China). 300 mg graphite powder (or nano-graphite powder, graphene oxide, highly-oriented pyrolytic graphite, single/multiwalled carbon nanotubes or fullerene) was dispersed in mixed acid (containing concentrated HNO<sub>3</sub> 20 mL and concentrated H<sub>2</sub>SO<sub>4</sub> 60 mL). The solution was then put into a 100 mL round-bottomed flask, and stirred at 120 °C for 10 h. After the reaction, the solution was diluted by pouring it into 300 mL deionized water, followed by neutralizing the acid with Na<sub>2</sub>CO<sub>3</sub>. The solution was concentrated and then put into the refrigerator to remove the  $Na_2SO_4$  and  $NaNO_3$  salt from the solution as much as possible (this was repeated three times). Aggregation in the solution was then excluded using a filter membrane of 220 nm. Finally, a 3500 dialysis bag was used to further purify the sample.



2. SEM images of the conjugates of Ap-GQDs and Ep-GQDs

Fig. S1 SEM images for the conjugates of Ap-GQDs and Ep-GQDs at different magnifications.

3. The particle size distribution as determined by DLS for the nanosensor (conjugates of

Ap-GQDs and Ep-GQDs) before and after addition of INF-γ.



**Fig. S2** The particle size distribution as determined by DLS for the nanosensor (conjugates of Ap-GQDs and Ep-GQDs) before (a) and after (b) addition of INF- $\gamma$ .

# 4. The life time GQDs and the modified GQDs at 488 nm excitation and probed at different wavelengths.



Fig. S3 Photoluminescence studies of Ep-GQDs, Ap-GQDs, and Ep-GQDs and Ap-GQDs before and after adding 50 pg mL<sup>-1</sup> IFN- $\gamma$ .

## 5. The fluorescence parameters of Ep-GQDs, Ap-GQDs and the conjugation of Ep-

#### **GQDs and Ap-GQDs.**

**Table S1** The fluorescence parameters of GQDs, Ep-GQDs, Ap-GQDs and the conjugation of Ep-GQDs and Ap-GQDs.

|               | $\lambda_{ex}^{a}(nm)$ | $\lambda_{em}^{b}(nm)$ | $\varphi_c^{c}$ (%) | $\tau_{d^{d}}(ns)$ |
|---------------|------------------------|------------------------|---------------------|--------------------|
|               |                        |                        |                     |                    |
| GQDs          | 480                    | 529                    | 5.7%                | 7.4                |
| Ap-GQDs       | 480                    | 534                    | 5.8%                | 7.5                |
| Ep-QGDs       | 480                    | 534                    | 5.8%                | 7.5                |
| Conjugates of | 480                    | 531                    | 0.3%                | 0.2                |
| Ap-GQDs and   |                        |                        |                     |                    |
| Ep-GQDs       |                        |                        |                     |                    |

*a* Optimal excitation wavelength. *b* Optimal emission wavelength.

*c* Quantum yield determined by absolute quantum yield measurement. *d* lifetime.

#### 6. The life time of GQDs, Ep-GQDs, and Ap-GQDs



Fig. S4 The average PL lifetime of GQDs, Ep-GQDs, and Ap-GQDs at different probed

wavelength (375 nm excitation, the concentration of the related GQDs is 0.5 mg/mL).

# 7. The comparison of sensing performance between different fluorescence biosensors for

#### detection of IFN-y

Table S2 Comparison of the performance of representative biosensors for detection of IFN- $\gamma$ 

in last 5 years.

|                                               | Performance      |                             |                          |
|-----------------------------------------------|------------------|-----------------------------|--------------------------|
| Biosensors                                    | Detection signal | Linear range                | LOD                      |
| GQDs based aptamer nanosensors                | Fluorescence     | 5-100 pg mL <sup>-1</sup>   | 2 pg mL <sup>-1</sup>    |
| (Sensor in this work)                         |                  |                             |                          |
| G-quadruplex-selective iridium(III)           | Luminescence     | 0.4-300 ng mL <sup>-1</sup> | 2 ng mL <sup>-1</sup>    |
| complex based assay <sup>1</sup>              |                  |                             |                          |
| Aptamer modified gold electrodes <sup>2</sup> | Electrochemistry | 1-100 ng mL <sup>-1</sup>   | 10 ng mL <sup>-1</sup>   |
| Aptamer modified gold electrodes <sup>3</sup> | Electrochemistry | 1–500 ng mL <sup>-1</sup>   | 1.3 ng mL <sup>-1</sup>  |
| Aptamer modified gold electrode <sup>4</sup>  | Electrochemistry | 0.2-200 ng mL <sup>-1</sup> | 0.01 ng mL <sup>-1</sup> |
| Gold nanoparticles modified optical           | Surface Plasmon  | 2-500 pg mL <sup>-1</sup>   | 1 pg mL <sup>-1</sup>    |
| fibre <sup>5</sup>                            | Resonance        |                             |                          |

#### References

- 1. S. Lin, B. He, C. Yang, C.-H. Leung, J.-L. Mergny and D.-L. Ma, *Chemical Communications*, 2015, **51**, 16033-16036.
- 2. Y. Liu, T. Kwa and A. Revzin, *Biomaterials*, 2012, **33**, 7347-7355.
- 3. Y. Chen, T. S. Pui, P. Kongsuphol, K. C. Tang and S. K. Arya, *Biosensors and Bioelectronics*, 2014, **53**, 257-262.

- 4. J. Xia, D. Song, Z. Wang, F. Zhang, M. Yang, R. Gui, L. Xia, S. Bi, Y. Xia and Y. Li, *Biosensors and Bioelectronics*, 2015, **68**, 55-61.
- 5. H.-H. Jeong, N. Erdene, J.-H. Park, D.-H. Jeong, H.-Y. Lee and S.-K. Lee, *Biosensors and Bioelectronics*, 2013, **39**, 346-351.